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8 The repressilator

Today we will talk about an oscillating genetic circuit developed by Elowitz and Leibler and published
in 2000, called the repressilator. As we work through this example, we will learn a valuable technique
for analyzing dynamical systems, including many of those we encounter in systems biology, linear
stability analysis.

8.1 Design of the repressilator

The repressilator consists of three repressors on a plasmid, as shown in Fig. 7. They are TetR, A cl,
and Lacl. For our analysis here, the names are unimportant, and we will call them repressor 1, 2, and
3. Repressor 1 represses production of repressor 2, which in turn represses production of repressor
3. Finally, repressor 3 represses production or repressor 1, completing the loop.

a Repressilator Reporter

P lac01

tetR-lite
P, tet01

kanR N\

pSC101 gfp-aav

AP
origin R

lacl-lite
ColE1

A cl-lite

P tet01

Figure 7: Schmematic of the plasmids used to construct the repessilator in E. coli. The
three repressors TetR, A cI, and Lacl, are on the same plasmid and form a cycle of
repression. Additionally, TetR represses GFP, which is found on another plasmid. The
lite suffix on the repressors signifies that they have a destruction tage to decrease their
stability. The aav suffix on the GFP indicates that it is a variant of intermediate stability.
Taken from Elowitz and Leibler, Sczence, 403, 335-338, 2000.

We might work out the dynamics of this system by reasoning. We might get a stable steady state,
where all three levels of repressor are tuned to reasonably repress the others. Conversely, we might
image a dynamic scenario. Say that initially repressor 1 has high copy number and repressors 2 and
3 are low. The high copy of number of repressor 1 will keep the numbers of repressor 2 down. This
means that repressor 3 is free to be expressed. As its copy number grows, it will start to repress
repressor 1. As repressor 1 goes down, repressor 2 is expressed in higher numbers. The increased
repressor 2 copy number leads to less repressor 3. Then, repressor 1 comes back up again. So, we see
acycle, where repressor 11is high, then repressor 3, and finally repressor 2. Since repressor 1 represses
GFP, we will see an oscillation in GFP as repressor 1 goes up and down.
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8.2 Dynamical equations for the repressilator

To analyze the repressilator, we will write down our usual dynamical expressions. For simplicity, we
will assume symmetry among the species and will consider only protein dynamics, ignoring mRNA.
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In dimensionless units, this is
% = lij’ —x;,  withs jpairs (1,3),(2,1), (3, 2). (8.4)
8.2.1 Fixed point
To find the fixed point of the repressilator, we solve for x; with &; = 0 V7. We get that
p
= 8.5
X1 1+ x’; ) ( )
_ b
_ b
We can substitute the expression for x; into that for x; to get
P A (8.8)
1+ b
1+
We can then substitute the expression for for «, to get
1+ b
1+«

This looks like a gnarly expression, but we can write it conveniently as a composite function. Specif-
ically,

x = f(f(f(n))) = fff (), (8.10)
where
flw) = Hix" (8.11)
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By symmetry, this relation holds for repressors 2 and 3 as well, so we have

& = fff(x). (8.12)

Writing the relationship for the fixed point with a composite function is useful because we can
easily compute the derivatives of the composite function using the chain rule.

I () = f'(f(x) - f' (), (8.13)

TH' () = 1 (@) - fF (%) = £/ (fF (&) - f/ () - £/ (). (8.14)

Now, since f(x) is monotonically decreasing, f'(x) < 0, and also f/(f(x)) < 0. This means that
ff'(x) > 0,s0 ff(x) is monotonically increasing. Now, f’(ff(x)) < 0, since f’(anything monotonically increasing) <

0. this means that fff(x) is monotonically decreasing. Since ; is increasing, there is a single fixed
point with x = fff(x) (see Fig. 8). So, we have a unique fixed point with

X1 =X = X3 = X9 — lfxg, (8.15)

or

B =xo(1+ ). (8.16)

T ‘X
Figure 8: Sketch of the fixed point of a repressilator.

Because we have a single fixed point, we cannot have bistability in the repressilator. What happens
at this fixed point? To answer this question, we turn to linear stability analysis.

8.3 Linear stability analysis

We first give an introduction to the technique of linear stability analysis generically. The basic idea is
that we approximate a nonlinear dynamical system by its Taylor series to first order near the fixed point
and then look at the behavior of the simpler linear system. The Hartman-Grobman theorem (which
we will not derive here) ensures that the linearized system faithfully represents the phase portrait of
the full nonlinear system near the fixed point.

Say we have a dynamical system with variables u with

du

S = flw), (8.17)
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where f(u) is a vector-valued function, i.e.,

f(ll) = ( 1(1417 Uz, .. .),fz(ul, Uy, .. .)7 .. ) (818)

Say that we have a fixed point u,. Then, linear stability analysis proceeds with the following steps.

1) Linearize about uy, defining u = u — u,. To do this, expand f(u) in a Taylor series about uy
to first order.

flu) = flwo) + Vf(uo) - du+---, (8.19)

where Vf(uy) = A is the Jacobi matrix,

of oA
Ouy  Ouy
Viw)=A= |2 2 ... (8.20)
Thus, we have
du du, déu .
T ar + i f(up) + A - 6u + higher order terms. (8.21)
Since
du
dTO = f(uo) = 0, (8.22)
we have, to linear order,
déu
— =A.bu 8.23
a u (8.23)

2) Compute the eigenvalues, 4 of A.
3) - IfRe(4) < Oforall 4, then the fixed point uy is linearly stable.
- IfRe(4) > Oforany A, then the fixed point uy is linearly unstable.

- IfRe(1) = 0 for one or more A, with the rest having Re(1) < 0, then the fixed point
u, lies at a bifurcation.

So, if we can assess the dynamics of the linearized system near the fixed point, we can get an idea
what is happening with the full system.

To do the linearization, we need to do Taylor expansions of Hill functions. We do this so often,
this is worth stating here and memorizing for future use.

g ! )
ekl + (;1#)2 S« + higher order terms, (8.24)
0
1 !
o (1”4_#)2 S« + higher order terms. (8.25)
0

22



8.4 Linear stability analysis for the repressilator

To perform linear stability analysis for the repressilator, we begin by writing the linearized system.

dém Py

dr ~ (1 +xg)2 5.96’3 — 5.%’1,
d o, Py !

dt ~ (1 —|—xﬁ)2 6.%'1 (sz,
-1

d5x3 ~ — ﬂnxg 5x2 — 5.96‘3.

dt © (1+47)?
Defining
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we can write this in matrix form as

d ox 1 6.5\5'1
E (3.96’2 =—A- 5.96'2 s
? 6.96'3 5x3

with

To compute the eigenvalues of A, we compute the characteristic polynomial using cofactors,

1+ 2+ A +a@) =0+1)>*+a=o0.

This is solved to give

A=—-1+a7-1

Recalling that there are three cube roots of —1, we get our three eigenvalues.

A=—-1—a, —1+%(1+z\/§), —1+g(1—z’\/§).

(8.26)

(8.27)

(8.28)

(8.29)

(8.30)

(8.31)

(8.32)

(8.33)

(8.34)

The first eigenvalue is always real and negative. The second two have a positive real partifa > 2, or

Py !

> 2.
(1+x5)?

Now,

P = %(1+ ),

which we found when computing the fixed point, so

o
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So,a > 2 only if » > 2, meaning that we must have ultrasensitivity for the fixed point to be unstable.

At the bifurcation,
el
= =2 8.38
a 1+ xg ’ ( )
so
2
X = . 8.3
= (339)
Using f = x0(1 + &), we can write
n+1
n/n S
_n(r_y 8.40
p 2 (2 ) ( )
at the bifurcation. So, for » > 2 and
n+1
n/n -
Ly 1) 7 8.41
b= 2 (2 ( )

we have imaginary eigenvalues with positive real parts. This is an oscillatory instability.

8.5 Numerical solution of the repressilator dynamics

We can solve for the dynamics of the repressilator numerically. This is done in the Jupyter notebook
accompanying this lecture. Importantly, we see that we get a succession of peaks,1 -2 -3 — 1 —
2 — 3-... This s like a clock. Can we have a clock with 12 peaks (“hours”)?
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