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9 Delay oscillators

We continue our discussion of oscillators by considering a very simple oscillator, perhaps even sim-
pler than the repressilator. We will consider a simple, single-component circuit with negative feed-
back with delay. The basic idea has been put forward many times, notably by Julian Lewis in 2003,
describing transcriptional delay.

9.1 A simple delay oscillator

For the simplest picture, consider an autoinhibitory gene. The inhibition of transcription if realized
by the protein product, which takes a while to be made after transcription. So, there is a time delay
between the onset of production of the mRNA transcript and the effect of self-repression. We will
call this time delay Ȓ . So, we can write an ODE describing the dynamics of expression of this gene
(which we will call X) as

dx
dt

=
Ȁ

1+
(

x(t − Ȓ )
k

)n − ȁx. (9.1)

In other words, we are stating that the expression of X at time t is dependent on its expression level at
time t − Ȓ .

Doing our usual nondimensionalization, setting Ȁ/ȁ → Ȁ, ȁ t → t, x/k → x, and ȁ Ȓ → Ȓ, we
have

dx
dt

=
Ȁ

1+ (x(t − Ȓ ))n − x. (9.2)

We can solve this numerically (see accompanying Jupyter notebook), to get oscillations.

The principle behind the presence of oscillations is simple, and illustrated in Fig. 9. Because the
rate of expression is determined by past protein levels, high expression occurs when protein levels
were low in the past and low expression occurs when protein levels were high in the past.

9.2 An example of delay in a biological circuit

To investigate how delay can give rise to oscillations, we consider a multistep process of the pro-
duction and action of a repressor. The delay in transcriptional regulation in real cells comes from
processes such as translation, trans-nuclear transport, etc. We will consider a simple version of this,
shown in Fig. 10, in which r is some intermediate state en route to functioning protein. We can write
the dynamics as

dm
dt

=
Ȁm

1+ (p/k)n − ȁ mm, (9.3)

dr
dt

= Ȁrm − ȁ rr, (9.4)

dp
dt

= Ȁpr − ȁpp, (9.5)
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Figure 9: Schematic of how delayed repression can give oscillations.

m r p

Figure 10: Delayed repression as a result of slow mRNA processing.

where for simplicitywehave assumedmass action type kinetics for all processes other than repression.
These equations can be nondimensionalized by renaming parameters and variables as ȁ mt → t, p/k →
p, Ȁr Ȁpm/ȁ 2

mk → m, Ȁpr/ȁ mk → r, Ȁm Ȁr Ȁp/ȁ 2
mk → Ȁ and ȁp/ȁ m → ȁ to give

dm
dt

=
Ȁ

1+ pn − m, (9.6)

dr
dt

= m − r, (9.7)

dp
dt

= r − ȁp. (9.8)

There is a single fixed point (m0, r0, p0) for this system,

m0 = r0 = ȁp0, (9.9)

Ȁ
ȁ = p0(1+ pn

0). (9.10)
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We can perform linear stability analysis about this fixed point, just as we did in the last lecture.

d
dt

⎛

⎝
Ȃm
Ȃr
Ȃp

⎞

⎠ = A ·

⎛

⎝
Ȃm
Ȃr
Ȃp

⎞

⎠ , (9.11)

with

A =

⎛

⎝
−1 0 −a
1 −1 0
0 1 −ȁ

⎞

⎠ , (9.12)

where

a =
Ȁnpn−1

0

(1+ pn
0)

2 =
ȁnpn

0

1+ pn
0
. (9.13)

To find the eigenvalues, we write the characteristic polynomial as

−(1+ ȉ)2(ȁ + ȉ)− a = −ȉ 3 − (2+ ȁ )ȉ 2 − (1+ 2ȁ )ȉ − ȁ − a = 0. (9.14)

This polynomial has no positive real roots and either one or three negative real roots according to
the Descartes Sign Rule. We are interested in the case where we have one negative real root and two
complex conjugate roots. If the real part of these complex conjugate roots is positive, we have an
oscillatory instability.

We can compute the eigenvalues of the linear stability matrix for various values of Ȁ and ȁ for
fixed Hill coefficient n. This is done in the accompanying Jupyter notebook. Importantly, we see that
we must have very high ultrasensitivity (n about 9 or 10) to get oscillatory instabilities for reasonable
values of Ȁ and ȁ . Furthermore, the sliver of parameter space that gives an oscillatory instability
is small (Fig. 11). Such a simple description shows that the ability of oscillations is not robust to
parameter values and that high sensitivity is necessary.

Figure 11: Linear stability diagram for a delay due to mRNA processing for n = 10.
The dark gray region has parameter values that give oscillatory instability.

To gain better insights on how the delay affect stability, we will consider the stability of the sim-
ple picture described by equation (9.1). First, we lay the groundwork for linear stability of delayed
differential equations.
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9.3 Linear stability analysis of a delayed differential equation

Consider a system of delay differential equations,

du
dt

= f(u(t), u(t − Ȓ )). (9.15)

Here, we have written that the time derivative explicitly depends on the value of u at the present time
and also at some time Ȓ time units ago in the past. A steady state of the delay differential equations,
u0 satisfies u0(t) = u0(t− Ȓ ) ≡ u0 by the definition of a steady state. So, the steady state u0 satisfies
f(u0, u0) = 0. We will perform a linear stability analysis about this steady state.

To linearize, we now have the f is a function of two sets of variables, present and past u. We then
write a Taylor series expansion with respect to both of these variables to linearize.

f(u(t), u(t − Ȓ )) ≈ f(u, u0) + A · (u(t)− u0) + AȒ · (u(t − Ȓ )− u0), (9.16)

where

A =

⎛

⎜⎜⎝

∂f1
∂u1(t)

∂f1
∂u2(t)

· · ·
∂f2

∂u1(t)
∂f2

∂u2(t)
· · ·

...
...

. . .

⎞

⎟⎟⎠ (9.17)

and

AȒ =

⎛

⎜⎜⎝

∂f1
∂u1(t− Ȓ )

∂f1
∂u2(t− Ȓ ) · · ·

∂f2
∂u1(t− Ȓ )

∂f2
∂u2(t− Ȓ ) · · ·

...
...

. . .

⎞

⎟⎟⎠ , (9.18)

where all derivatives in both matrices are evaluated at u(t) = u(t − Ȓ ) = u0. Defining Ȃu = u− u0,
our linearized differential equations are

dȂu
dt

= (A+ AȒ ) · Ȃu. (9.19)

To solve the linear system, we insert the ansatz, Ȃu = w eȉ t, giving

ȉeȉ t w = A · w eȉ t + AȒ · w eȉ(t− Ȓ ), (9.20)

or, upon simplifying,

ȉw = (A+ e−ȉ ȒAȒ ) · w. (9.21)

So, ȉ is an eigenvalue and w the corresponding eigenvector for the matrix (A+ e−ȉ ȒAȒ ).

In general, there are infinitely many values of ȉ that satisfy equation (9.21). Nonetheless, if we
can show that the real part of all possible values of ȉ is less than zero, then the fixed point is stable.
Otherwise, if the real part of any values of ȉ are positive, the fixed point is locally unstable. If ȉ has
an imaginary part for the eigenvalues where the real part is positive, the instability is oscillatory.
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9.4 Linear stability analysis of delayed autorepression

We consider now the simple case of an autorepressor with delay. The governing ODE is

dx(t)
dt

=
Ȁ

1+ (x(t − Ȓ )/k)n − ȁx(t). (9.22)

We nondimensionalize by setting ȁ t → t, ȁ Ȓ → Ȓ , Ȁ/kȁ → Ȁ , and x/k → x. Our dimensionless
equation is

dx(t)
dt

=
Ȁ

1+ (x(t − Ȓ ))n − x(t). (9.23)

The steady state is given by setting the time derivative to zero,

Ȁ = x0(1+ xn
0). (9.24)

The x0 that satisfies this equality is unique because the right hand is monotonically increasing from
zero, so it only crosses a value of Ȁ once. So, we will consider the stability of this unique steady state.

We linearize the right hand side of the ODE around the fixed point. The matrices A and AȒ are
scalars in this case because we have a single species. Remember that the eigenvalue of a scalar is just
the scalar itself. So, we have

A = −1 (9.25)

AȒ = − Ȁnxn−1
0

(1+ xn
0)

2 = − nxn
0

1+ xn
0
≡ −aȒ , (9.26)

where we have define aȒ for convenience. Thus, our characteristic equation is

ȉ = −1− aȒ e−ȉ Ȓ . (9.27)

There are infinitely many ȉ that satisfy this equation in general.

We can still make progress. To further investigate the dynamics, we write ȉ = a+ ib, where a is
the real part at b is the imaginary part. Then, the characteristic equation is

a + ib = −aȒ e−a Ȓ e−ib Ȓ − 1 = −aȒ e−a Ȓ (cos bȒ − i sin bȒ )− 1. (9.28)

This can be written as two equations be equating the real and imaginary parts of both sides of the
equality.

a = −(1+ aȒ e−a Ȓ cos bȒ ) (9.29)

b = aȒ e−a Ȓ sin bȒ . (9.30)

Right away, we can see that if a is positive, we must have aȒ > 1, since |e−a Ȓ cos bt| < 1. Recall our
expression for aȒ ,

aȒ =
nxn

0

1+ xn
0
. (9.31)

Because xn
0/(1+ xn

0) < 1, we must have n > 1 in order to have the eigenvalue have a positive real part
and therefore have an instability. So, ultrasensitivity is a requirement for a delay oscillator.
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To investigate when we get an oscillatory instability, we will compute the values of aȒ and Ȓ that
lie on the bifurcation line between a stable steady state and an oscillatory instability, a so-called Hopf
bifurcation. To do this, we solve for the line with a = 0 and b ̸= 0. In this case, the characteristic
equation gives

−aȒ cos bt = 1 (9.32)

aȒ sin bt = b. (9.33)

Squaring both equations and adding gives

a2Ȓ = 1+ b2, (9.34)

Thus,

b =
√

a2Ȓ − 1, (9.35)

which only holds for aȒ > 1, which we already found was a requirement for an oscillatory instability.
To find Ȓ , we have

− aȒ cos bȒ = −aȒ cos
√

a2Ȓ − 1 t = 1 (9.36)

⇒ Ȓ =
Ȏ − cos−1

(
a−1

Ȓ
)

√
a2Ȓ − 1

. (9.37)

The region of stability is below the bifurcation line in the Ȓ -Ȁ plane, since a smaller Ȓ serves to
decrease the real part of ȉ . We can compute the linear stability diagram in the Ȓ -Ȁ plane. This is
done in the accompaying Jupyter notebook, and the result is shown in Fig. 12 for various degrees of
ultrasensitivity. The longer the time delay, the more robust to variations in other parameters is the
oscillatory behavior.

Figure 12: Linear stability diagram for a single component delay oscillator. The dark
shaded region has an oscillatory instability, though only above the respective bifurca-
tion lines.
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9.5 Stabilization of a delay oscillator with a toggle

Finally, we note that we can make the oscillations more robust by connecting a delay oscillator to a
toggle. This was done by Stricker, et al., Nature, 456, 516–519, 2008. The circuit diagram is shown
in Fig. 13.

X Y

Figure 13: Two delay oscillators (X delayed autorepression and Y delayed repression
via X) coupled to a bistable circuit (autoactivated Y).

X and Y are coupled delay oscillators. X oscillates because of delayed repression, which we have
been studying. Y oscillates via its X-mediated self-repression. Finally, the autoactivation of Y has
bistability, a high and a low state as we saw in the first week of class. The toggle due to the bistability
tends to push the oscillator to extremes, stabilizing the limit cycle. This is more difficult to explore
mathematically, and Stricker, et al., do it numerically. They designed and built robust circuits using
this architecture.
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