
BE 150: Design Principles of Genetic
Circuits
Justin Bois

Caltech

Spring, 2018

This document was prepared at Caltech with financial support from the Donna and Benjamin M.
Rosen Bioengineering Center.

© 2018 Justin Bois.
All rights reserved except for figures taken from literature sources.



10 Noisy gene expression

Thus far, we have written deterministic systems of ordinary differential equations to describe the dy-
namics of mRNA and protein concentrations in cells. When we considered the statistical mechanical
model for gene expression regulation, we considered the probability of a promoter being bound. This
probability is considered over an ensemble of states. We assumed that there are enough of all the com-
ponents, and enough time, to sample the states of this ensemble. So, we were looking at rates of gene
expression considering large numbers of the molecular constituents.

In our study of noise this week, we will address two questions.

1. What are the sources of noise and how do we characterize them?

2. What are the dynamics of the entire probability distribution of protein levels? From this, can
we identify design principles?

We will address the first question today and the second question in the next lecture. To do so, as
suggested in the second question, wewill use themathematicalmachinery of probability, an important
tool for every biologist and bioengineer to have in his or her toolbox.

10.1 Noise is present in many genetic circuits

The copy numbers of many proteins and mRNA molecules are small in a given cell. A recent study
quantified counts of transcription factors. The result is shown in Fig. 14. As evident in the figure,
many of the copy numbers of come transcription factors, relative to the number of binding sites, is
between 1 and 10. These are small numbers! This means that they are susceptible to fluctuations.
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such competition is used to establish the hierarchy of co-utilization of 
sugars39, and the generally low ratio between transcription factor copy 
number and binding sites suggests that similar hierarchical regulation 
may extend to other transcriptional regulators.

We next investigated the extent to which the topology of the  
transcriptional regulatory network can explain the expression of 
proteins across conditions. Therefore, we calculated the pairwise 
Pearson correlation between all proteins and compared the correlation  
coefficients of co-activated/co-repressed proteins (i.e., proteins  
sharing at least one transcriptional repressor or activator; as reported 
in RegulonDB40) with those of the rest of the protein pairs (Fig. 3c).  
Here, across conditions, we found that co-transcribed proteins  
(i.e., proteins from the same operon) had a clear bias toward strong 
positive correlations. Co-transcribed protein pairs with weak cor-
relation had additional, nonoverlapping transcription units (Fig. 3c, 
gray dashed line). The strong bias for strong positive correlations  
in co-transcribed proteins suggests that differential post- 
transcriptional regulation of gene expression within operons plays 
a limited role in E. coli. In contrast, we found that co-activated/ 
co-repressed proteins (i.e., proteins that are regulated by the same 
transcription factors) show weak correlations. This finding suggests 
that in different conditions distinct subsets of a transcription factor’s  
targets are activated or repressed, which makes the topology of 
the transcriptional regulatory network a poor predictor of protein  
expression across conditions.

Distribution of protein mass between periplasm and cytoplasm
Next, we investigated the condition-specific localization of protein mass 
between different cellular compartments. 1,174 of the measured pro-
teins had a compartmental localization assigned, representing 76–83% 
of the total protein mass at the different conditions (Supplementary 
Table 13). Generally, we found that the protein mass fraction of the 
cytosolic proteins significantly (P < 0.0001) increased with growth rate 
(Fig. 4a), whereas correspondingly the mass fraction of periplasmic 
proteins significantly (P < 0.0001) decreased, even when considering 
geometric alterations resulting from increased cell volumes achieved at 
faster growth rates (Supplementary Fig. 13). In stationary phase condi-
tions, periplasmic proteins accounted for 15% of the expressed protein 
mass, whereas on LB medium, only 6%. On an absolute level, the mass 
of all periplasmic proteins per cell was greater in slowly growing E. coli 
cells (despite their smaller size) compared to their fast-growing coun-
terparts (Supplementary Table 14). Further, we found that the relative 
mass of proteins associated with the inner membrane increased, whereas 
the relative mass of proteins located at the outer membrane decreased 
during faster cell growth (Supplementary Table 14).

Taking these identified distributions of the protein mass together 
and assuming constant protein concentrations across cellular com-
partments suggested that the volume fractions between cytoplasm and 
periplasm change as a function of growth rate (Fig. 4b, upper panel), 
with the cytoplasm assuming higher, and the periplasm lower, volume 
fractions at high growth rates. To test this, we generated cryo-electron 

*****0.8

0.6

C
um

ul
at

iv
e 

di
st

rib
ut

io
n

0.4

0.2

0
0 0.5 1.5

a

Coefficient of variation

Transcription factor

Energy metabolism

All

1.0

1.0 2.0

0.8

0.6

N
or

m
al

iz
ed

 n
um

be
r 

in
 b

in

0.4

0.2

0

Co-repressed

Co-activated

Co-transcribed

Partially co-transcribed

All

Correlation coefficient
–1 –0.5 0 0.5

c

1.0

1.0

R
at

io
 T

F
 c

op
y

nu
m

be
r/

T
F

 b
in

di
ng

 s
ite

s

104

103

102

101

100

10–1

Lowest HighestNumber TF binding sites

Repressor

Activator

Unknown/dual

b

m
hp

R
(1

)
eb

gR
(1

)
ni

kR
(1

)
al

aS
(1

)
ai

dB
(1

)
ac

cB
(1

)
ye

hT
(1

)
tr

eR
(2

)
gl

cC
(2

)
cu

sR
(2

)
bi

rA
(2

)
fu

cR
(2

) yi
aJ

(2
)

kd
gR

(2
)

di
cA

(2
)

bo
lA

(2
)

uh
pA

(2
) yq

jI(
2)

yp
dB

(2
)

lrh
A

(3
)

pa
aX

(3
)

rp
iR

(3
)

na
dR

(3
)

al
lR

(3
)

pe
pA

(3
)

cu
eR

(3
)

cs
pA

(4
)

ba
eR

(4
)

rc
nR

(4
)

ye
fM

(4
)

ps
pF

(5
)

pu
tA

(5
)

rs
tA

(5
)

st
pA

(5
)

m
qs

A
(5

)
hu

pB
(6

)
hu

pA
(6

)
sl

yA
(6

)
nr

dR
(6

)
m

nt
R

(6
)

re
lB

(6
)

m
ra

Z
(6

)
m

lc
(8

)
gc

vA
(8

) de
oR

(8
)

ba
sR

(8
) pu

uR
(8

)
m

od
E

(9
)

ux
uR

(9
) pd

hR
(9

)
tr

pR
(1

0)
m

et
R

(1
0) cy
sB

(1
1)

ev
gA

(1
1)

ex
uR

(1
1)

ag
aR

(1
1) na

nR
(1

2)
is

cR
(1

3)
fa

dR
(1

6)
dn

aA
(1

7)
gn

tR
(1

7)
ro

b(
18

)
m

al
T

(2
0)

ty
rR

(2
2)

pu
rR

(2
2)

na
rP

(2
3)

gl
pR

(2
3)

om
pR

(2
4)

na
gC

(2
8)

m
et

J(
32

)
gl

nG
(3

3)
ar

gR
(3

4)
rc

sB
(3

8)
ph

oP
(4

0)
ox

yR
(4

4)
le

xA
(4

5)
cr

a(
61

)
cp

xR
(7

0)
na

rL
(1

13
)

ih
fA

(1
20

)
ih

fB
(1

20
) hn

s(
12

2)
fu

r(
12

7)
ar

cA
(1

31
)

fn
r(

14
1) fis

(2
61

)
cr

p(
35

4)

Ir
p(

15
0)m
pr

A
(3

)

Figure 3 Role of transcriptional regulatory network in determining proteome resource allocation.  
(a) Cumulative distribution of the coefficient of variation (CV) for two representative protein classes  
(red: 90 transcription factors, blue: proteins belonging to the COG category “energy conversion and  
metabolism”) compared to the whole detected proteome (black dashed line). Protein concentrations  
were calculated from protein copy numbers and cell volumes for all conditions. For each protein, the  
CV was calculated as its relative s.d. across conditions, using only conditions in which this protein was  
reliably quantified (relative error of quantification <30%). Only proteins for which more than 50% of the  
conditions yielded reliable quantification were used. Transcription factors have a lower median CV than  
the rest of the proteome (one-sided Wilcoxon rank sum test, P = 0.012), whereas proteins of energy  
metabolism have a higher median CV (one-sided Wilcoxon rank sum test, P = 2.17 × 10−5). (b) Relationship  
between transcription factor copy number and corresponding number of chromosomal binding sites per cell.  
Transcription factors were sorted according to the number of reported binding sites (based on RegulonDB40).  
Transcription factor copy numbers were normalized for the number of proteins in the active transcription factor  
complex (i.e., considering eventual multimerization of the transcription factors). The number of chromosomal  
binding sites was adjusted to account for growth rate–dependent differences in DNA content (as described48). Small gray circles: transcription  
factor/binding site ratio for each condition. Large circles: median ratio across all conditions. Transcription factors are marked as repressors (red)  
or activators (blue) if more than 50% of their binding sites are reported as repressing or activating, respectively. Transcription factors with predominantly 
dual, or unknown, effect are marked in black. The number of distinct transcription factor binding sites in the chromosome is shown in brackets 
after transcription factor names. Note that HupA/B (HU complex) with a median ratio of >104 also play a histone-related role as part of the nucleoid 
complex49, and the observed high HupA/B copy numbers are likely reflecting HU’s role in the structural integrity of the chromosome. (c) Distribution of 
protein cross-correlations across conditions. Cross-correlation was calculated as pairwise Pearson correlation coefficient between proteins across all  
22 conditions. Distribution for proteins whose genes are targeted by at least one common repressor or activator are shown as red and blue line, 
respectively. Gray line: protein pairs, which share at least one transcription unit (= co-transcribed). Gray dashed line: fraction of co-transcribed protein 
pairs, which also have nonoverlapping transcription units (= partially co-transcribed). Black dashed line: cross-correlation of all detected protein pairs. 
**P < 0.05; ***P < 0.01.

Figure 14: Quantification of copy number of transcription factors inE. coli. Taken from
Schmidt, et al., Nature Biotech., 34, 104–113, 2016.

Generally speaking, we call deviations from what we might expect from our deterministic view
of gene expression stochasticity, or noise. This is a key concept, because nearly all cellular processes
are susceptible to noise, for a host of reasons, including low copy numbers of molecular regulators of
gene expression.
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10.2 Definition of total noise

To quantify the noise, we need to define a metric. To do so, we start with some other definitions. Let
n(t) be the copy number of a protein of interest.2 Let P(n) be the probability of observing n copies
of the protein of interest. We define the noise, ȅtot, as the coefficient of variation of gene expression.
This is given by the standard deviation of n over its mean. Thus,

ȅ2
tot =

Ȋ2 − Ȋ2
1

Ȋ2
1

, (10.1)

where Ȋm is the mth moment of the probability distribution,

Ȋm =
∞∑

n=0

nm P(n). (10.2)

If the standard deviation is comparable to the mean, as we would expect in the case of large copy
numbers, we have low noise, but if it is large compared to the mean, we have high noise.

Because we do not know the probability distribution of copy number, P(n), but rather can only
measure copy number (or often a quantity approximately proportional to copy number, as is the case
with fluorescence measurements), we can approximate the noise with its plug-in estimate from the
experimental data. For example, if the fluorescence intensity c is related to the copy number by ac = n,
then we have

ȅ2
tot =

⟨n2⟩ − ⟨n⟩2

⟨n⟩2 =
⟨c2⟩ − ⟨c⟩2

⟨c⟩2 . (10.3)

10.3 Extrinsic and intrinsic noise

We would like to know more about the noise, specifically where it comes from. We can separate the
noise into intrinsic and extrinsic noise.

Intrinsic noise: Transcription and translation can occur at different times and rates in otherwise identical sys-
tems. This results in fluctuations in n(t). The fluctuations in the copy number of the protein
of interest are due to fluctuations that affect only the gene of interest. Operationally, intrinsic
noise causes the failure of identical genes in identical environments to correlate. This funda-
mentally limits the precision of regulation.

Extrinsic noise: Other molecular species, such as RNA polymerase, ribosomes, chemical species in the cell’s
environment, vary over time and affect the gene of interest. The fluctuations in the copy
number of the protein of interest are due to fluctuations that affect all genes in a cell.

The total noise is written as the sum of intrinsic and extrinsic contributions.3

ȅ2
tot = ȅ2

int + ȅ2
ext. (10.4)

2I choose n here instead of p like we have been using so as to avoid confusion with the probability
distribution P.

3It is not clear that we can write the noise as a sum of these two contributions in this way, and
we will gloss over that here. For a more complete treatment of intrinsic versus extrinsic noise, see
Hilfinger and Paulsson, PNAS, 108, 12167–12172 [link].
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With this in mind, we can define a probability distribution that also contains the extrinsic and
intrinsic variables that contribute to gene expression level. We denote these respectively by E and I.
Let P(n,E, I) be the joint probability distribution for n, E, and I. This probability mass function P(n)
is found by marginalizing the extrinsic and intrinsic variables.

P(n) =
∫

dE
∫

dI P(n,E, I). (10.5)

Wehave been a little cavalier here because someof the intrinsic and extrinsic variablesmay be discrete,
and we have written continuous distribution. The general argument does not change if we explicitly
consider discrete and continuous variables, sowewill write themall as continuous for ease of notation.

The mth moment is then

Ȋm =
∞∑

n=0

nmP(n) =
∞∑

n=0

nm
∫

dE
∫

dI P(n,E, I) =
∫

dE
∫

dI
∞∑

n=0

nmP(n,E, I)

=

∫
dE
∫

dI ȊE,I
m , (10.6)

where we have defined ȊE,I
m as the mth moment for a particular E and I. We define

x̄ =

∫
dE x (10.7)

and ⟨x⟩ =
∫

dI x, (10.8)

such that

Ȋm =
〈

ȊE,I
m

〉
=
〈

ȊE,I
m

〉
. (10.9)

The total noise is then given by

ȅ2
tot =

Ȋ2 − Ȋ2
1

Ȋ2
1

=

〈
ȊE,I
2

〉
−
〈

ȊE,I
1

〉2

〈
ȊE,I
1

〉2 . (10.10)

Now, say we are interested in the intrinsic noise. We first compute the coefficient of variation for
a fixed E. We define

ȊI
m(E) =

〈
ȊE,I

m

〉
=

∫
dI

∞∑

n=0

nm P(n,E, I). (10.11)

To find the contributions to the variance by the intrinsic part, we average the first and secondmoment
over the extrinsic variables.

varint =
∫

dE
[

ȊI
2 −

(
ȊI
1

)2]
= ȊI

2 −
(

ȊI
1

)2
= ȊI

2 −
(

ȊI
1

)2
= Ȋ 2 −

(
ȊI
1

)2
. (10.12)

So, we can define the intrinsic contribution to the noise as the intrinsic standard deviation over the
mean, or

ȅ 2
int =

varint
Ȋ2
1

=
Ȋ2 −

(
ȊI
1

)2

Ȋ2
1

. (10.13)
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Because the remaining noise must be extrinsic, we can use the expressions for the total noise, (10.10),
and the intrinsic noise, (10.13), to write

ȅ2
tot = ȅ 2

int + ȅ 2
ext =

Ȋ2 −
(

ȊI
1

)2

Ȋ2
1

+

(
ȊI
1

)2 − Ȋ2
1

Ȋ2
1

. (10.14)

10.4 Computing noise from experiments

Let’s say we are monitoring copy number by fluorescence. Let c be the fluorescence intensity, say
for a CFP channel, and we assume c = n/a; i.e., the fluorescence intensity is proportional to the
copy number. In this case, we may use c as a proxy for n in computing the noise, since the constant
of proportionality will cancel out. Computing the total noise is easy, since our experiment naturally
contains all of the intrinsic and extrinsic variables. Say we have N cells. Then,

Ȋ1 ≈
a
N

N∑

k=1

ck (10.15)

Ȋ2 ≈
a2

N

N∑

k=1

c2k , (10.16)

where ck is the integrated intensity for cell k. The problem is that we cannot compute
(

ȊI
1

)2
directly

from measurements. We cannot separate out extrinsic from intrinsic variables.

This conundrum was tackled in a clever experiment by Elowitz, et al., Science, 197, 1183–1186,
2002. They realized that if each cell has two different genes coding for fluorescent proteins, say CFP
and YPF, with identical regulatory sequences that can be measured simultaneously, we can compute
(

ȊI
1

)2
. This can be seen as follows. Because both copies of the gene are in the same cell, they experi-

ence the same extrinsic variables. Then, we can write

(
ȊI
1

)2
=

∫
dE

(∫
dI

∞∑

n=0

n P(n,E, I)

)2

=

∫
dE

(∫
dIc

∞∑

nc=0

nc P(nc,E, Ic)

)⎛

⎝
∫

dIy

∞∑

ny=0

ny P(ny,E, Iy)

⎞

⎠

=

∫
dE
∫

dIc

∫
dIy

∞∑

nc=0

∞∑

ny=0

nc ny P(nc, ny,E, Ic, Iy)

≈ 1
N

N∑

k=1

nc,k ny,k =
ab
N

N∑

k=1

ck yk, (10.17)

where ck is the integrated fluorescence intensity of cell k in the CFP channel with yk similarly defined.
So, if we have two different fluorescent reporters on identical genes, we can compute the necessary
average from the product of the intensities of each reporter.

Elowitz and coworkers built strains of E. coli that contained CFP and YFP reporter genes in the
chromosomal genome with identical promoters. The promoters were equidistant from the origin of
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replication, so their expression level should be exactly the same in the absence of noise. If there is
no intrinsic noise, the levels of CFP and YFP should be identical throughout time, and all of the cells
should be the same color. In the presence of intrinsic noise, the CFP andYFP signals will be different.

To quantify the intrinsic versus extrinsic noise, we measure many cells in a population and com-
pute the integrated CFP and YFP intensity for each cell. To ease notation, we define

⟨c⟩ = 1
N

∑

k

ck, (10.18)

⟨c2⟩ = 1
N

∑

k

c2k , (10.19)

⟨cy⟩ = 1
N

∑

k

ck yk, (10.20)

with ⟨y⟩ and ⟨y2⟩ similarly defined. There should be no notational confusion with the angled brackets
of the previous section; the present angled brackets indicate averaging over a population of cells.
Then, we have plug-in estimates for the moments,

Ȋ1 ≈ ⟨nc⟩ = ⟨ny⟩ = a⟨c⟩ = b⟨y⟩, (10.21)

Ȋ2 ≈ ⟨n2
c ⟩ = ⟨n2

y ⟩ = a2⟨c2⟩ = b2⟨y2⟩. (10.22)

Here, we have defined b analogously to a; it is the constant of proportionality between YFP copy
number and measured YFP fluorescence intensity. Because the genes are identical, the distributions
of the copy numbers should be identical, meaning that the moments and their plug-in estimates are
also identical. That is, am⟨cm⟩ = bm⟨ym⟩, which we express in the equalities in the above expressions.
We can then write the contributions to the noise as

ȅ 2
tot =

a2⟨c2⟩ − a2⟨c⟩2

a2⟨c⟩2 =
1
2

(
a2⟨c2⟩+ b2⟨y2⟩

)
− ab⟨c⟩⟨y⟩

ab⟨c⟩⟨y⟩ , (10.23)

ȅ 2
int =

a2⟨c2⟩ − ab⟨cy⟩
a2⟨c⟩2 =

1
2

(
a2⟨c2⟩+ b2⟨y2⟩

)
− ab⟨cy⟩

ab⟨c⟩⟨y⟩ , (10.24)

ȅ 2
ext = ȅ 2

tot − ȅ 2
int =

⟨cy⟩ − ⟨c⟩⟨y⟩
⟨c⟩⟨y⟩ . (10.25)

We can arbitrarily choose units of fluorescence such that a = b. In practice, this involves setting
intensity units such that ⟨c⟩ = ⟨y⟩ = 1. Then, the expressions simplify to

ȅ 2
tot =

1
2

(
⟨c2⟩+ ⟨y2⟩

)
− ⟨c⟩⟨y⟩

⟨c⟩⟨y⟩ , (10.26)

ȅ 2
int =

1
2

(
⟨c2⟩+ ⟨y2⟩

)
− ⟨cy⟩

⟨c⟩⟨y⟩ =
⟨(c − y)2⟩
2⟨c⟩⟨y⟩ , (10.27)

ȅ 2
ext =

⟨cy⟩ − ⟨c⟩⟨y⟩
⟨c⟩⟨y⟩ . (10.28)

Note that the extrinsic noise is independent of the choice of fluorescence units.

Looking at these expressions, we see that the extrinsic noise is proportional to the covariance
of the two signals. This makes sense, since correlation between the two should depend on external
considerations. The intrinsic noise is proportional to ⟨(c− y)2⟩, the deviation between CFP and YFP.
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10.5 Experimental results

In Elowitz, et al., Science, 197, 1183–1186, 2002, the authors performed experiments to study intrinsic
versus extrinsic noise in E. coli. The two identical promoters we discussed in the last section were
repressed by LacI, which itself was modulated by IPTG, which inhibits LacI. They could therefore
dial the level of expression up and down to see how this affects noise.

In Fig. 15, we see measurements of fluorescence intensity for a group of cells. Because the genes
are in the same cell, they are subject to the same extrinsic fluctuations, which are manifest in scatter
of the point along the diagonal. Orthogonal scatter is due to intrinsic fluctuations. We see scatter in
both directions, indicating the presence of both intrinsic and extrinsic noise.

noise was much larger in the presence of the
LacI plasmid because of reduced transcription
rate, but it fell substantially as IPTG was
added. !int is expected to decrease as !int

2 "
(c1/m) # c2, where m is the fluorescence
intensity of the cell (assumed to be propor-
tional to the average number of transcripts),
and c1 and c2 are constants given by the
microscopic parameters (7). This form fits

the data, with strain D22 exhibiting higher
amounts of intrinsic noise than M22 at all
levels of expression (Fig. 3, B and C).

The extrinsic noise, !ext, behaves very dif-
ferently as a function of IPTG concentration.
Whereas !int decreases monotonically, !ext dis-
plays a maximum at intermediate rates of tran-
scription. As a result, total cell-cell variability
(!tot) does not uniquely determine intrinsic

noise. The presence of a maximum in !ext may
be explained as a result of cell-cell variation in
the concentration of LacI (13). Interestingly,
!ext is substantially smaller in cells carrying a
chromosomal copy of lacI than it is in cells
carrying a plasmid-borne copy of the gene (at
comparable expression levels; see Table 1 and
Fig. 3). This is consistent with greater variabil-
ity in copy number for the plasmid-borne lacI

Table 1. Measurements of noise in selected strains.

Modification* Strain† Intensity‡ Intrinsic noise, !int§¶
($ 10% 2)

Extrinsic noise, !ext§
($ 10% 2)

Total noise, !tot§
($ 10% 2)

Constitutive (lacI% ) M22 1 5.5 (5.1–6) 5.4 (4.8–5.9) 7.7 (7.4–8.1)
JM22 0.88 5.0 (4.6–5.4) 6.1 (5.5–6.7) 7.9 (7.4–8.4)
MRR 1.21 5.1 (4.7–5.4) 5.6 (5.1–6.2) 7.6 (7.2–7.9)

Wild type (lacI# ) MG22 0.057 19 (18–21) 32 (29–35) 37 (35–40)
RP22 0.030 25 (22–27) 33 (30–35) 41 (39–43)

Wild type (LacI# ), # IPTG RP22 1.00 6.3 (5.8–6.9) 9.8 (9.0–11) 11.7 (11–12.3)
lacI% , Repressilator M22 0.18 12 (11–13) 42 (37–45) 43 (39–47)

MRR 0.16 11 (9.8–12) 57 (52–62) 58 (53–63)
&recA, lacI% D22 0.81 10.5 (9.6–11.4) 4.6 (2.8–5.8) 11.4 (10.8–12.1)

M22&A 0.99 13 (12–15) 2.4 (0–5.3) 13.6 (12.8–14.5)
JM22&A 0.92 14 (11–17) 2.5 (0–7.3) 15 (12–16.4)

&recA, lacI# # IPTG RP22&A 1.22 17 (15–20) 12 (8.8–14) 21 (20–22)

*Repressilator refers to SpectR version of plasmid in (16); # IPTG indicates growth in the presence of 2 mM IPTG. †The following strain backgrounds were used: MC4100 (22) for
M22, MRR, and M22&A; DY331 (23) for D22; JM2.300 (E. coli Genetic Stock Center) for JM22 and JM22&A; MG1655 for MG22; and RP437 (24) for RP22 and RP22&A. Each strain
contains twin PLlacO1 promoters (9), except MRR, which contains twin 'PR promoters (25). ‡Mean CFP value, relative to the intensity of strain M22. §95% confidence limits
are in parentheses; see (7). ¶CFP and YFP are stable in E. coli (26); effective noise levels for unstable proteins would be greater (for example, a doubling of noise level for a protein
half-life of ( 0.3 cell cycle) (8).

Fig. 3. Quantification of noise. (A) Plot of fluorescence in two strains: one
quiet (M22) and one noisy (D22). Each point represents the mean fluo-
rescence intensities from one cell. Spread of points perpendicular to the
diagonal line on which CFP and YFP intensities are equal corresponds to
intrinsic noise, whereas spread parallel to this line is increased by extrinsic
noise. (B) Noise versus rate of transcription in strain M22 (recA# , lacI–),
with LacI supplied by plasmid pREP4 (7). Fluorescence levels (x axis) are
population means. The rightmost point represents the strain without
pREP4 and therefore is fully induced; its value, set to 1.0, was used to
normalize all fluorescence intensities. IPTG (0 to 2 mM) was added to
cultures and !tot, !int, and !ext were measured. Error bars are 95%
confidence intervals. Dashed line fits !int

2 " (c1/m) # c2, where m )
fluorescence intensity (x axis), c1 ) 7 $ 10% 4, and c2 ) 3 $ 10% 3. (C)
Noise versus induction level in recA–lacI– strain D22, containing plasmid
pREP4. All notations are as in (B). In the fit, c1 ) 5 $ 10% 4 and c2 ) 1 $
10% 2.
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Figure 15: Measured fluorescent intensities of fluorophores from two identical pro-
moters in single cells of two strains of E. coli. Taken from Elowitz, et al., Science, 197,
1183–1186, 2002.

In Fig. 16, we see measured intrinsic, extrinsic, and total noise as a function of total fluorescence
level. For very high copy numbers (high fluorescence), we see low noise, both intrinsic and extrinsic.
At large copy numbers, noise tends to be low, since fluctuations only comprise a small fraction of the
total number of molecules. At low copy number, we have higher intrinsic noise; fluctuations are more
pronounced at low copy numbers. We also have higher extrinsic noise, but the extrinsic noise exhibits
a maximum at intermediate copy number. This is possibly due to repression by LacI. At high copy
number, we expect low noise. At very low copy number, we have very little ITPG present, so we have
large copy numbers of LacI. This results in strong repression by large amount of LacI, resulting in
more immunity to extrinsic fluctuations (e.g., fluctuations in the already large copy number of LacI).
In between, we have moderate copy number of both the fluorescent protein and LacI, resulting in
greater extrinsic noise.
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noise was much larger in the presence of the
LacI plasmid because of reduced transcription
rate, but it fell substantially as IPTG was
added. !int is expected to decrease as !int

2 "
(c1/m) # c2, where m is the fluorescence
intensity of the cell (assumed to be propor-
tional to the average number of transcripts),
and c1 and c2 are constants given by the
microscopic parameters (7). This form fits

the data, with strain D22 exhibiting higher
amounts of intrinsic noise than M22 at all
levels of expression (Fig. 3, B and C).

The extrinsic noise, !ext, behaves very dif-
ferently as a function of IPTG concentration.
Whereas !int decreases monotonically, !ext dis-
plays a maximum at intermediate rates of tran-
scription. As a result, total cell-cell variability
(!tot) does not uniquely determine intrinsic

noise. The presence of a maximum in !ext may
be explained as a result of cell-cell variation in
the concentration of LacI (13). Interestingly,
!ext is substantially smaller in cells carrying a
chromosomal copy of lacI than it is in cells
carrying a plasmid-borne copy of the gene (at
comparable expression levels; see Table 1 and
Fig. 3). This is consistent with greater variabil-
ity in copy number for the plasmid-borne lacI

Table 1. Measurements of noise in selected strains.

Modification* Strain† Intensity‡ Intrinsic noise, !int§¶
($ 10% 2)

Extrinsic noise, !ext§
($ 10% 2)

Total noise, !tot§
($ 10% 2)

Constitutive (lacI% ) M22 1 5.5 (5.1–6) 5.4 (4.8–5.9) 7.7 (7.4–8.1)
JM22 0.88 5.0 (4.6–5.4) 6.1 (5.5–6.7) 7.9 (7.4–8.4)
MRR 1.21 5.1 (4.7–5.4) 5.6 (5.1–6.2) 7.6 (7.2–7.9)

Wild type (lacI# ) MG22 0.057 19 (18–21) 32 (29–35) 37 (35–40)
RP22 0.030 25 (22–27) 33 (30–35) 41 (39–43)

Wild type (LacI# ), # IPTG RP22 1.00 6.3 (5.8–6.9) 9.8 (9.0–11) 11.7 (11–12.3)
lacI% , Repressilator M22 0.18 12 (11–13) 42 (37–45) 43 (39–47)

MRR 0.16 11 (9.8–12) 57 (52–62) 58 (53–63)
&recA, lacI% D22 0.81 10.5 (9.6–11.4) 4.6 (2.8–5.8) 11.4 (10.8–12.1)

M22&A 0.99 13 (12–15) 2.4 (0–5.3) 13.6 (12.8–14.5)
JM22&A 0.92 14 (11–17) 2.5 (0–7.3) 15 (12–16.4)

&recA, lacI# # IPTG RP22&A 1.22 17 (15–20) 12 (8.8–14) 21 (20–22)

*Repressilator refers to SpectR version of plasmid in (16); # IPTG indicates growth in the presence of 2 mM IPTG. †The following strain backgrounds were used: MC4100 (22) for
M22, MRR, and M22&A; DY331 (23) for D22; JM2.300 (E. coli Genetic Stock Center) for JM22 and JM22&A; MG1655 for MG22; and RP437 (24) for RP22 and RP22&A. Each strain
contains twin PLlacO1 promoters (9), except MRR, which contains twin 'PR promoters (25). ‡Mean CFP value, relative to the intensity of strain M22. §95% confidence limits
are in parentheses; see (7). ¶CFP and YFP are stable in E. coli (26); effective noise levels for unstable proteins would be greater (for example, a doubling of noise level for a protein
half-life of ( 0.3 cell cycle) (8).

Fig. 3. Quantification of noise. (A) Plot of fluorescence in two strains: one
quiet (M22) and one noisy (D22). Each point represents the mean fluo-
rescence intensities from one cell. Spread of points perpendicular to the
diagonal line on which CFP and YFP intensities are equal corresponds to
intrinsic noise, whereas spread parallel to this line is increased by extrinsic
noise. (B) Noise versus rate of transcription in strain M22 (recA# , lacI–),
with LacI supplied by plasmid pREP4 (7). Fluorescence levels (x axis) are
population means. The rightmost point represents the strain without
pREP4 and therefore is fully induced; its value, set to 1.0, was used to
normalize all fluorescence intensities. IPTG (0 to 2 mM) was added to
cultures and !tot, !int, and !ext were measured. Error bars are 95%
confidence intervals. Dashed line fits !int

2 " (c1/m) # c2, where m )
fluorescence intensity (x axis), c1 ) 7 $ 10% 4, and c2 ) 3 $ 10% 3. (C)
Noise versus induction level in recA–lacI– strain D22, containing plasmid
pREP4. All notations are as in (B). In the fit, c1 ) 5 $ 10% 4 and c2 ) 1 $
10% 2.
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Figure 16: Measured noise in the M22 strain. The x-axis is the relative fluorescence
level. Taken from Elowitz, et al., Science, 197, 1183–1186, 2002.
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