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10 Noisy gene expression

Thus far, we have written deterministic systems of ordinary differential equations to describe the dy-
namics of mRNA and protein concentrations in cells. When we considered the statistical mechanical
model for gene expression regulation, we considered the probability of a promoter being bound. This
probability is considered over an ensemble of states. We assumed that there are enough of all the com-
ponents, and enough time, to sample the states of this ensemble. So, we were looking at rates of gene
expression considering large numbers of the molecular constituents.

In our study of noise this week, we will address two questions.

1. What are the sources of noise and how do we characterize them?

2. What are the dynamics of the entire probability distribution of protein levels? From this, can
we identify design principles?

We will address the first question today and the second question in the next lecture. To do so, as
suggested in the second question, we will use the mathematical machinery of probability, an important
tool for every biologist and bioengineer to have in his or her toolbox.

10.1 Noise is present in many genetic circuits

The copy numbers of many proteins and mRNA molecules are small in a given cell. A recent study
quantified counts of transcription factors. The result is shown in Fig. 14. As evident in the figure,
many of the copy numbers of come transcription factors, relative to the number of binding sites, is
between 1 and 10. These are small numbers! This means that they are susceptible to fluctuations.
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Figure 14: Quantification of copy number of transcription factors in E. coli. Taken from
Schmidt, et al., Mature Biotech., 34,104-113, 2016.

Generally speaking, we call deviations from what we might expect from our deterministic view
of gene expression stochasticity, or noise. This is a key concept, because nearly all cellular processes
are susceptible to noise, for a host of reasons, including low copy numbers of molecular regulators of
gene expression.
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10.2 Definition of total noise

To quantify the noise, we need to define a metric. To do so, we start with some other definitions. Let
n(t) be the copy number of a protein of interest.> Let P(r) be the probability of observing # copies
of the protein of interest. We define the noise, 7,,, as the coefficient of variation of gene expression.
This is given by the standard deviation of # over its mean. Thus,

Hy — MY

rltzot = T%, (10.1)

where 4, is the mth moment of the probability distribution,

fy =Y 1" P(n). (10.2)

If the standard deviation is comparable to the mean, as we would expect in the case of large copy
numbers, we have low noise, but if it is large compared to the mean, we have high noise.

Because we do not know the probability distribution of copy number, P(%), but rather can only
measure copy number (or often a quantity approximately proportional to copy number, as is the case
with fluorescence measurements), we can approximate the noise with its plug-in estimate from the
experimental data. For example, if the fluorescence intensity cis related to the copy number by ac = #,
then we have

(n?) — (m? _ (&) —(g)?

Mot = <n>2 = <L‘>2 . (10.3)

10.3 Extrinsic and intrinsic noise

We would like to know more about the noise, specifically where it comes from. We can separate the
noise into intrinsic and extrinsic noise.

Intrinsic noise: Transcription and translation can occur at different times and rates in otherwise identical sys-
tems. This results in fluctuations in #(#). The fluctuations in the copy number of the protein
of interest are due to fluctuations that affect only the gene of interest. Operationally, intrinsic
noise causes the failure of identical genes in identical environments to correlate. This funda-
mentally limits the precision of regulation.

Extrinsic noise: Other molecular species, such as RNA polymerase, ribosomes, chemical species in the cell’s
environment, vary over time and affect the gene of interest. The fluctuations in the copy
number of the protein of interest are due to fluctuations that affect a// genes in a cell.

The total noise is written as the sum of intrinsic and extrinsic contributions.3

77t20t = ’7i2nt + ﬂﬁxr (10.4)

%I choose 7 here instead of p like we have been using so as to avoid confusion with the probability
distribution P.

31t is not clear that we can write the noise as a sum of these two contributions in this way, and
we will gloss over that here. For a more complete treatment of intrinsic versus extrinsic noise, see
Hilfinger and Paulsson, PNAS, 108, 12167-12172 [link].
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With this in mind, we can define a probability distribution that also contains the extrinsic and
intrinsic variables that contribute to gene expression level. We denote these respectively by E and 1.
Let P(n, E, I) be the joint probability distribution for #, E, and I. This probability mass function P(»)
is found by marginalizing the extrinsic and intrinsic variables.

P(n) = /dE/dIP(n,E, I). (10.5)
We have been alittle cavalier here because some of the intrinsic and extrinsic variables may be discrete,

and we have written continuous distribution. The general argument does not change if we explicitly
consider discrete and continuous variables, so we will write them all as continuous for ease of notation.

The mth moment is then

=D W"P(n) =) n" / dE / dIP(n,E, 1) = / dE / dI ) n"P(n,E,T)
n=0 n=0 n=0

= / dE / dr Bt (10.6)

where we have defined yE! as the mth moment for a particular E and 1. We define

¥= / dEx (10.7)
and (x) = / dlw, (10.8)
such that
foy = <ﬂ5’1> = <ﬂ5’l>- (10.9)
The total noise is then given by
_— 2
EI EI
— 2 M) — (M’
rItZOt _ /’tz zﬂl — < > <2 > . (10'10)

H1 < E,I>
M

Now, say we are interested in the intrinsic noise. We first compute the coefficient of variation for
a fixed E. We define

uL(E) = <,uf‘”’l> = /dlin’” P(n,E,T). (10.11)

To find the contributions to the variance by the intrinsic part, we average the first and second moment
over the extrinsic variables.

variy = / dE [ — (u)’] = b — ()" = s — ()" =y — ()", (10.12)

So, we can define the intrinsic contribution to the noise as the intrinsic standard deviation over the
mean, or

(10.13)
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Because the remaining noise must be extrinsic, we can use the expressions for the total noise, (10.10),
and the intrinsic noise, (10.13), to write

wo— (W) (W)~ ut
> .

(10.14)
H1 /‘%

2 2 2 _
Mot = Mint + Next =

10.4 Computing noise from experiments

Let’s say we are monitoring copy number by fluorescence. Let ¢ be the fluorescence intensity, say
for a CFP channel, and we assume ¢ = n/a; i.e., the fluorescence intensity is proportional to the
copy number. In this case, we may use ¢ as a proxy for # in computing the noise, since the constant
of proportionality will cancel out. Computing the total noise is easy, since our experiment naturally
contains all of the intrinsic and extrinsic variables. Say we have /V cells. Then,

N
a
oy ~ X/ch (10.15)
k=1
2L
~ SN 2 10.16
/’tZ N P ko ( )

. . . . . 2 .
where ¢ is the integrated intensity for cell #. The problem is that we cannot compute (u!)” directly
from measurements. We cannot separate out extrinsic from intrinsic variables.

This conundrum was tackled in a clever experiment by Elowitz, et al., Science, 197, 1183-1186,
2002. They realized that if each cell has two different genes coding for fluorescent proteins, say CFP
and YPF, with identical regulatory sequences that can be measured simultaneously, we can compute

2 . . . .
(4})”. This can be seen as follows. Because both copies of the gene are in the same cell, they experi-
ence the same extrinsic variables. Then, we can write

7 - o[ a S e

= /dE (/ dICZn[P(nﬁE,I[)) /dIyZnJ,P(n),,E, L)
n,=0 ny=0
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n,=0 n,=0
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1 ab
~ /T/ Z P My b = ﬁ Z CeIkes (10'17)
k=1 k=1

where ¢ is the integrated fluorescence intensity of cell £in the CFP channel with y;, similarly defined.
So, if we have two different fluorescent reporters on identical genes, we can compute the necessary
average from the product of the intensities of each reporter.

Elowitz and coworkers built strains of E. coli that contained CFP and YFP reporter genes in the
chromosomal genome with identical promoters. The promoters were equidistant from the origin of
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replication, so their expression level should be exactly the same in the absence of noise. If there is
no intrinsic noise, the levels of CFP and YFP should be identical throughout time, and all of the cells
should be the same color. In the presence of intrinsic noise, the CFP and YFP signals will be different.

To quantify the intrinsic versus extrinsic noise, we measure many cells in a population and com-
pute the integrated CFP and YFP intensity for each cell. To ease notation, we define

() = %Z ks (10.18)
k

(@) = %Zfﬁ (10.19)
k

(o) = %Z ks (10.20)
k

with (y) and (y*) similarly defined. There should be no notational confusion with the angled brackets
of the previous section; the present angled brackets indicate averaging over a population of cells.
Then, we have plug-in estimates for the moments,

Hy = (ne) = (my) = alc) = b(y), (10.21)
Wy~ (np) = (my) = a* (&) =B ("), (10.22)

Here, we have defined 4 analogously to 4; it is the constant of proportionality between YFP copy
number and measured YFP fluorescence intensity. Because the genes are identical, the distributions
of the copy numbers should be identical, meaning that the moments and their plug-in estimates are
also identical. That is, a” (") = ¥ (y™), which we express in the equalities in the above expressions.
We can then write the contributions to the noise as

2 _ P —d ()P (@S +P07) —ab0)))

Mot = 22 <C>2 = ﬂb<€> > ) (1023)
2 _ @2) —ably) _ 3 (@) +20?)) —ablo)

r]im‘ - dz <€>2 - db<€> <)/> B (1024)
s (9 - 0)

next - r]tot nmt <€> <}’> . (1025)

We can arbitrarily choose units of fluorescence such that 2 = 4. In practice, this involves setting
intensity units such that (¢) = (y) = 1. Then, the expressions simplify to

: _ 1 (&) +0%) - 0)

Nior = ) ) (10.26)
2 _ (A +07) — (o) _ (c—»?)

iy = 0 = 200 () ) (10.27)
2 _ (@) — 0

Newe = <L‘> <y> : (10.28)

Note that the extrinsic noise is independent of the choice of fluorescence units.

Looking at these expressions, we see that the extrinsic noise is proportional to the covariance
of the two signals. This makes sense, since correlation between the two should depend on external
considerations. The intrinsic noise is proportional to ((¢ —)?), the deviation between CFP and YFP.
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10.5 Experimental results

In Elowitz, et al., Science, 197, 1183-1186, 2002, the authors performed experiments to study intrinsic
versus extrinsic noise in E. coli. The two identical promoters we discussed in the last section were
repressed by Lacl, which itself was modulated by IPTG, which inhibits Lacl. They could therefore
dial the level of expression up and down to see how this affects noise.

In Fig. 15, we see measurements of fluorescence intensity for a group of cells. Because the genes
are in the same cell, they are subject to the same extrinsic fluctuations, which are manifest in scatter
of the point along the diagonal. Orthogonal scatter is due to intrinsic fluctuations. We see scatter in
both directions, indicating the presence of both intrinsic and extrinsic noise.
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Figure 15: Measured fluorescent intensities of fluorophores from two identical pro-
moters in single cells of two strains of E. coli. Taken from Elowitz, et al., Science, 197,
1183-1186, 2002.

In Fig. 16, we see measured intrinsic, extrinsic, and total noise as a function of total fluorescence
level. For very high copy numbers (high fluorescence), we see low noise, both intrinsic and extrinsic.
At large copy numbers, noise tends to be low, since fluctuations only comprise a small fraction of the
total number of molecules. At low copy number, we have higher intrinsic noise; fluctuations are more
pronounced at low copy numbers. We also have higher extrinsic noise, but the extrinsic noise exhibits
a maximum at intermediate copy number. This is possibly due to repression by Lacl. At high copy
number, we expect low noise. At very low copy number, we have very little I'TPG present, so we have
large copy numbers of Lacl. This results in strong repression by large amount of LacI, resulting in
more immunity to extrinsic fluctuations (e.g., fluctuations in the already large copy number of LacI).
In between, we have moderate copy number of both the fluorescent protein and Lacl, resulting in
greater extrinsic noise.
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Figure 16: Measured noise in the M22 strain. The x-axis is the relative fluorescence
level. Taken from Elowitz, et al., Science, 197, 1183-1186, 2002.
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