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11 Bursty gene expression

Last time, we laid out two objectives. First, we aimed to identify the sources of noise and how to
characterize them. We summarized statistics about the probability distribution of copy numbers by
considering themean and coefficient of variation. Themean ends up following the same deterministic
dynamics we have been considering thus far in the course. The coefficient of variation is a measure of
noise, or relative departure from the mean behavior. Now, we will look at the dynamics of the entire
probability distribution of copy number, P(n, t).

11.1 Master equations

We will use master equations to describe the dynamics of P(n, t). Generally, a master equation is a
loss-gain equation for probabilities of states governed by a Markov process.4 In our case, the “state”
is the set of copy numbers of molecular species of interest. The values of n are discrete, so we have a
separate differential equation for each P(n, t). Specifically,

dP(n, t)
dt

=
∑

n′
[W(n | n′)P(n′, t)− W(n′ | n)P(n, t)] . (11.1)

Here, W(n | n′) is the transition probability per unit time of going from n′ to n.

The master equation makes sense by inspection and appears simple. The nuance lies in the def-
inition of the transition rates, W(n | n′). There is also the computational difficulty that n can be very
large. In general, solving the master equation is difficult and is usually intractable analytically. There-
fore, we sample out of the distribution. That is, we can drawmany samples of values of n at time points
t that are distributed according to the probability distribution that solves the master equation. We can
then plot histograms to get an approximate plot of the probability distribution. We can also use the
samples to compute moments, giving us estimates of the mean and variance. Generating the samples
from the differential master equation is done using aGillespie algorithm, also known as a stochastic
simulation algorithm, or SSA. We will learn how to do these calculations in the next lecture.

11.2 The Master equation for unregulated gene expression

As we have seen in class, unregulated gene expression is described by the macroscale equation

dn
dt

= Ȁ − ȁn. (11.2)

To translate this into stochastic dynamics, we write the production rate as

production rate = Ȁ Ȃn′,n−1, (11.3)

where we have used the Kronicker delta,

Ȃij =

{
1 i = j
0 i ̸= j.

(11.4)

4A good reference for studying master equations is Stochastic Processes in Physics and Chemistry by
N. G. van Kampen.

39



This says that if our current copy number is n− 1, the probability that it moves to n in unit time is Ȁ .
Similarly, the decay rate is

decay rate = ȁ (n + 1)Ȃ n′,n+1. (11.5)

This says that if we have n + 1 molecules, the probability that the copy number moves to n in unit
time is ȁ (n + 1). Thus, we have

W(n | n′) = Ȁ Ȃn′,n−1 + ȁ (n + 1)Ȃn′,n+1. (11.6)

We can then write our master equation as

dP(n, t)
dt

= ȀP(n − 1, t) + ȁ (n + 1)P(n + 1, t)− ȀP(n, t)− ȁnP(n, t), (11.7)

where we define P(n < 0, t) = 0.

This is a large set of ODEs, and as mentioned in the previous section, solving for P(n, t) is non-
trivial and is usually done by Gillespie algorithm. Instead, let’s look for a steady state solution of this
system of ODEs; i.e., let’s find P(n) that satisfies

dP
dt

= 0. (11.8)

Even solving for this is difficult. We will instead try a guess-and-check method. We will guess that
the steady state distribution is Poisson. We make this guess because it matches an intuitive “story”
about the mRNA production. The story of the Poisson distribution is this:

Rare events occur with a rate ȉ per unit time. There is no “memory” of previous
events; i.e., that rate is independent of time. The probability that k events occur in
unit time is Poisson distributed.

Our event here is the production of a gene product. We need these events to happen before decay.
The probability mass function of the Poisson distribution is

P(n; ȉ) = ȉ n

n!
e−ȉ . (11.9)

Let’s check if this works. We plug this expression for P(n) into the right hand side of the master
equation and see if we can get the expression to be equal to zero.

Ȁ ȉn−1

(n − 1)!
e−ȉ + ȁ (n + 1)

ȉn+1

(n + 1)!
e−ȉ − Ȁ ȉn

n!
e−ȉ − ȁn

ȉn

n!
e−ȉ = 0. (11.10)

Division of both sides of the equation by ȉn−1e−ȉ/(n − 1)! gives

Ȁ +
ȁ
n

ȉ2 − Ȁ ȉ
n
− ȁ ȉ = (Ȁ − ȁ ȉ)− ȉ

n
(Ȁ − ȁ ȉ) = 0 (11.11)

We see that we can get this expression to hold for all n provided ȉ = Ȁ/ȁ . So, the copy number if
Poisson distributed with mean Ȁ/ȁ .

It is useful also to consider themoments of the Poisson distribution and compute useful summary
statistics of the distribution.

⟨n⟩ = Ȁ
ȁ , (11.12)
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⟨n2⟩ − ⟨n⟩2 = ȑ 2 =
Ȁ
ȁ , (11.13)

noise =
ȑ
⟨n⟩ = ȅ =

√ ȁ
Ȁ , (11.14)

Fano factor = F =
ȑ 2

⟨n⟩ = 1. (11.15)

11.3 Dynamics of the moments

From the master equation, we can derive an ODE describing the dynamics of the mean copy number
of time, ⟨n(t)⟩. To do this, we multiply both sides of the master equations by n and then sum over n.

∞∑

n=0

n
[
dP(n, t)

dt
= ȀP(n − 1, t) + ȁ (n + 1)P(n + 1, t)− ȀP(n, t)− ȁnP(n, t)

]

=
d⟨n⟩
dt

= Ȁ
∞∑

n=0

nP(n − 1, t) + ȁ
∞∑

n=0

n(n + 1)P(n + 1, t)− Ȁ ⟨n⟩ − ȁ ⟨n2⟩, (11.16)

where we have used the facts that

⟨n⟩ =
∞∑

n=0

nP(n, t), (11.17)

⟨n2⟩ =
∞∑

n=0

n2P(n, t). (11.18)

We have two sums left to evaluate.
∞∑

n=0

nP(n − 1, t) =
∞∑

n=0

(n + 1)P(n, t) = ⟨n⟩+ 1, (11.19)

and
∞∑

n=0

n(n + 1)P(n + 1, t) =
∞∑

n=0

n(n − 1)P(n, t) = ⟨n2⟩ − ⟨n⟩. (11.20)

Thus, we have

d⟨n⟩
dt

= Ȁ (⟨n⟩+ 1) + ȁ (⟨n2⟩ − ⟨n⟩)− Ȁ ⟨n⟩ − ȁ ⟨n2⟩

= Ȁ − ȁ ⟨n⟩, (11.21)

which is precisely the macroscale ODE we are used to. It is now clear that it describes the mean of
the full probability distribution.

11.4 Experimental Fano factors are greater than one

A nice feature of considering the whole probability distribution is that we can predict a value for the
noise and Fano factor. Importantly, the Fano factor is invariant to parameters; it is always unity. So,
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if we see Fano factors of unity in experiment, we know our model for gene transcription is at least
plausible.

Gene expression in individual cells typically results in a Fano factor greater than one! There
are many ways this could come about, such as explicitly considering the multiple steps involved in
making a protein, or by having a switchable promoter, as we will explore in the homework. Today, we
will focus on a key experimental results: gene expression occurs in bursts.

11.5 Observations of bursty gene expression

In a beautiful set of experiments, Cai, Friedman, and Xie (Nature, 440, 358–362, 2006) discovered
that gene expression is bursty. (We will come to understand what we mean by “bursty” means in a
moment.)

Through a clever experimental setup (I encourage you to read the paper), Cai, Friedman, and
Xie were able to get accurate counts of the number of Ȁ -galactosidase molecules in individual cells
over time. They found that the number of molecules was constant over long stretches of time, and
then the number suddenly increased (Fig. 17). This shows that expression of the Ȁ -gal gene happens
in bursts. In each burst, many molecules are made, and then there is a period between bursts where
no molecules are made.

© 2006 Nature Publishing Group 

 

foreign organic molecules from the cytoplasm14 (see Supplementary
Information). As the fluorescent product molecules are pumped to
the surrounding medium and rapidly diffuse away, the advantage of
enzymatic amplification is lost.
To circumvent the efflux problem, we trap cells in closed micro-

fluidic chambers, such that the fluorescent product expelled from the
cells can accumulate in the small volume of the chambers, recovering
the fluorescence signal due to enzymatic amplification. The fast
efflux rate and short mixing time of the fluorescent molecules in
the miniature chambers guarantee that the fluorescence signal
outside the cells accurately reflects the enzymatic activity inside.
The microfluidic device is made of a soft polymer, polydimethyl-
siloxane (PDMS), and consists of a flow layer that contains the cells
and a top control layer (Fig. 1a)15,16. Actuation of two adjacent valves
in the control layer forms an enclosure of dimensions
100 £ 100 £ 10 mm3 (100 pl) in which cells can be trapped and
cultured17,18 (Fig. 1c, d; see also Supplementary Fig. S1). The micro-
fluidic chip is mounted on an inverted fluorescence microscope and
translated by a motorized stage, allowing multiplexing of data
acquisition by repeatedly scanning the chambers. Typically, 100
chambers can be scanned within less than 2min. Fluorescence is
excited with a tightly focused laser beam (Fig. 1a) that does not
directly illuminate the cell, avoiding cellular autofluorescence and
photo-damage to the cell.
We first show the ability to detect single enzyme molecules using

this technique by injecting a diluted solution of purified b-gal
enzyme and 300 mM of the fluorogenic substrate fluorescein-di-b-
D-galactopyranoside (FDG) into the chambers19. Fluorescence sig-
nals from different chambers increase with time, and the slopes give
the rates of hydrolysis (Fig. 1e). The distribution of hydrolysis rates
measured in the different chambers shows quantized and evenly
spaced peaks (Fig. 1f). We attribute these discrete peaks to integer
numbers of b-gal molecules. The spacing between the peaks is
60 pMmin21, which gives a calibration for the rate of increase in
fluorescein concentration corresponding to one enzyme molecule in
a chamber.
Another challenge for using b-gal to monitor gene expression in

live cells is that the cell wall acts as a barrier for FDG influx. We
quantify this effect in E. coli by measuring the hydrolysis rate for live
cells compared to cells treated with chloroform, which completely
permeabilizes cell membrane (Supplementary Fig. S4a). The ratio of
hydrolysis rates between these two cases is defined as the permeability
ratio, and is measured to be R ¼ 13 at 300 mm FDG. To increase FDG
influx, we transformed E. coli cells with a plasmid conferring
ampicillin resistance and grew the cells in media with b-lactam
antibiotics (see Methods). Under these conditions, cell wall synthesis
is partially inhibited, making the cells more permeable to FDG,
as evident by a lower value of R ¼ 2 ^ 0.3 (Supplementary Fig. S4b).
In determining the number of enzyme molecules in live cells
below, R ¼ 2 is used as a correction factor to the in vitro calibration
(Fig. 1f).
We then monitored gene expression in live E. coli cells in real time.

b-gal is expressed from the lacZ gene on the chromosomal DNA,
which is under the control of the lac promoter. Cells are grown in
glucose-containing medium without inducer to exponential phase;
hence the expression level is highly repressed20. We observed abrupt
changes in hydrolysis rates in chambers with dividing cells, as shown
in Fig. 2a, b. These step-wise increases in the rates indicate the
stochastic burst-like expression of new b-gal molecules. We attribute
the bursts to stochastic and transient dissociation events of the Lac
repressor from the promoter, followed by transcription of mRNA,
which is then translated into a few copies of the reporter protein
before the mRNA is degraded.
The expression of proteins from a given gene can be characterized

by two key parameters: the average frequency of expression bursts per
cell cycle, a; and the average number of protein molecules per burst,
b. Under conditions of exponential growth in minimal medium, the

burst frequency for protein expression from the repressed E. coli lacZ
gene is measured to be a ¼ 0.11 ^ 0.03 bursts per cell cycle. The
average burst size is measured to be b ¼ 5 ^ 2 enzymes, or 20 ^ 8
monomers per burst, which is consistent with biochemical estimates
of 25–30 b-gal monomers per mRNA21,22.
This real-time assay also allows us to measure the distribution of

the number of enzymes produced per burst (Fig. 2c). It can be well
fitted with an exponential distribution, PðnÞ ¼ C expð2n=bÞ, where n
is the number of b-gal molecules per burst and C is a normalization
constant. We attribute this distribution to the fact that the cellular
lifetime of the mRNA is exponentially distributed21,23. Previously
only theoretically predicted1,24, the exponential P(n) can be
accounted for by the competition between mRNA degradation by

Figure 2 | Quantitative real-time measurement of individual protein
expression events in live E. coli cells. b-gal is under the control of a
repressed lac promoter. a, Trace of a chamber containing dividing cells
shows abrupt changes in hydrolysis rates (arrows on black curve). An empty
chamber shows a constant background (red curve). b, Discrete jumps in
b-gal number are due to burst-like production of proteins. The number of
b-gal molecules is calculated by taking the time derivative of the traces in a
and compensating for fluorescein photobleaching (Supplementary
Information). c, Histogram of copy number of b-gal molecules per burst.
The distribution is well-fitted with an exponential function (black line), with
an average of five proteins per burst, and is a consequence of exponential
cellular lifetime of the mRNA.
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Figure 17: Number of Ȁ -galactosidase molecules present in a single cell over time
(black) and a blank background (red). Take from Cai, Friedman, and Xie Nature, 440,
358–362, 2006.

Cai and coworkers also found that the number ofmolecules produced per burst was geometrically
distributed, as shown in Fig. 18. Recall, the “story” behind the Geometric distribution.

We perform a series of Bernoulli trials with success probability p0 until we get a suc-
cess. We have k failures before the success. The probability distribution for k is Geo-
metric.

The probability mass function for the Geometric distribution is

P(k; p0) = (1− p0)kp. (11.22)

Considering this story, this implies that a burst is turned on, and then it turns off by a random process
after some time.
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To circumvent the efflux problem, we trap cells in closed micro-

fluidic chambers, such that the fluorescent product expelled from the
cells can accumulate in the small volume of the chambers, recovering
the fluorescence signal due to enzymatic amplification. The fast
efflux rate and short mixing time of the fluorescent molecules in
the miniature chambers guarantee that the fluorescence signal
outside the cells accurately reflects the enzymatic activity inside.
The microfluidic device is made of a soft polymer, polydimethyl-
siloxane (PDMS), and consists of a flow layer that contains the cells
and a top control layer (Fig. 1a)15,16. Actuation of two adjacent valves
in the control layer forms an enclosure of dimensions
100 £ 100 £ 10 mm3 (100 pl) in which cells can be trapped and
cultured17,18 (Fig. 1c, d; see also Supplementary Fig. S1). The micro-
fluidic chip is mounted on an inverted fluorescence microscope and
translated by a motorized stage, allowing multiplexing of data
acquisition by repeatedly scanning the chambers. Typically, 100
chambers can be scanned within less than 2min. Fluorescence is
excited with a tightly focused laser beam (Fig. 1a) that does not
directly illuminate the cell, avoiding cellular autofluorescence and
photo-damage to the cell.
We first show the ability to detect single enzyme molecules using

this technique by injecting a diluted solution of purified b-gal
enzyme and 300 mM of the fluorogenic substrate fluorescein-di-b-
D-galactopyranoside (FDG) into the chambers19. Fluorescence sig-
nals from different chambers increase with time, and the slopes give
the rates of hydrolysis (Fig. 1e). The distribution of hydrolysis rates
measured in the different chambers shows quantized and evenly
spaced peaks (Fig. 1f). We attribute these discrete peaks to integer
numbers of b-gal molecules. The spacing between the peaks is
60 pMmin21, which gives a calibration for the rate of increase in
fluorescein concentration corresponding to one enzyme molecule in
a chamber.
Another challenge for using b-gal to monitor gene expression in

live cells is that the cell wall acts as a barrier for FDG influx. We
quantify this effect in E. coli by measuring the hydrolysis rate for live
cells compared to cells treated with chloroform, which completely
permeabilizes cell membrane (Supplementary Fig. S4a). The ratio of
hydrolysis rates between these two cases is defined as the permeability
ratio, and is measured to be R ¼ 13 at 300 mm FDG. To increase FDG
influx, we transformed E. coli cells with a plasmid conferring
ampicillin resistance and grew the cells in media with b-lactam
antibiotics (see Methods). Under these conditions, cell wall synthesis
is partially inhibited, making the cells more permeable to FDG,
as evident by a lower value of R ¼ 2 ^ 0.3 (Supplementary Fig. S4b).
In determining the number of enzyme molecules in live cells
below, R ¼ 2 is used as a correction factor to the in vitro calibration
(Fig. 1f).
We then monitored gene expression in live E. coli cells in real time.

b-gal is expressed from the lacZ gene on the chromosomal DNA,
which is under the control of the lac promoter. Cells are grown in
glucose-containing medium without inducer to exponential phase;
hence the expression level is highly repressed20. We observed abrupt
changes in hydrolysis rates in chambers with dividing cells, as shown
in Fig. 2a, b. These step-wise increases in the rates indicate the
stochastic burst-like expression of new b-gal molecules. We attribute
the bursts to stochastic and transient dissociation events of the Lac
repressor from the promoter, followed by transcription of mRNA,
which is then translated into a few copies of the reporter protein
before the mRNA is degraded.
The expression of proteins from a given gene can be characterized

by two key parameters: the average frequency of expression bursts per
cell cycle, a; and the average number of protein molecules per burst,
b. Under conditions of exponential growth in minimal medium, the

burst frequency for protein expression from the repressed E. coli lacZ
gene is measured to be a ¼ 0.11 ^ 0.03 bursts per cell cycle. The
average burst size is measured to be b ¼ 5 ^ 2 enzymes, or 20 ^ 8
monomers per burst, which is consistent with biochemical estimates
of 25–30 b-gal monomers per mRNA21,22.
This real-time assay also allows us to measure the distribution of

the number of enzymes produced per burst (Fig. 2c). It can be well
fitted with an exponential distribution, PðnÞ ¼ C expð2n=bÞ, where n
is the number of b-gal molecules per burst and C is a normalization
constant. We attribute this distribution to the fact that the cellular
lifetime of the mRNA is exponentially distributed21,23. Previously
only theoretically predicted1,24, the exponential P(n) can be
accounted for by the competition between mRNA degradation by

Figure 2 | Quantitative real-time measurement of individual protein
expression events in live E. coli cells. b-gal is under the control of a
repressed lac promoter. a, Trace of a chamber containing dividing cells
shows abrupt changes in hydrolysis rates (arrows on black curve). An empty
chamber shows a constant background (red curve). b, Discrete jumps in
b-gal number are due to burst-like production of proteins. The number of
b-gal molecules is calculated by taking the time derivative of the traces in a
and compensating for fluorescein photobleaching (Supplementary
Information). c, Histogram of copy number of b-gal molecules per burst.
The distribution is well-fitted with an exponential function (black line), with
an average of five proteins per burst, and is a consequence of exponential
cellular lifetime of the mRNA.

NATURE|Vol 440|16 March 2006 LETTERS

359

Figure 18: Histogram of burst sizes. The histogram is well-described by the geometric
distribution. Take from Cai, Friedman, and Xie Nature, 440, 358–362, 2006.

11.6 Master equation for bursty gene expression

We also see from Fig. 17 that the time scale of the bursty gene expression is much shorter than the
typical decay time. So, per unit time, we can have many gene products made, not just a single gene
product as we have considered thus far. So, we can re-write our transition probabilities per unit time
as

W(n | n′) = Ȁ ′ Ȍn−n′ − ȁ (n + 1)Ȃn+1,n′ , (11.23)

where Ȍj is the probability of making j molecules in a burst and Ȁ ′ is the probability per unit time
of initiating production of molecules. If Ȍj = 0 for all j ̸= 1, then Ȁ ′ = Ȁ , and we have the same
equations as before. So, our model is only slightly changed; we just allow for more transitions in and
out of state n.

We just have to specify Ȍj. We know that the number of molecules produced per burst is geomet-
rically distributed, so

Ȍ j = p0(1− p0)j. (11.24)

Now, our master equation is

dP(n, t)
dt

= Ȁ ′
n−1∑

n′=0

p0(1− p0)n−n′P(n′, t) + ȁ (n + 1)P(n + 1, t)

− Ȁ ′
∞∑

n′=n+1

p0(1− p0)n′−nP(n, t)− ȁnP(n, t). (11.25)

We can simplify the second sum by noting that can be written as a geometric series,

∞∑

n′=n+1

p0(1− p0)n′−n = p0
∞∑

j=1

(1− p0)j = p0

(
1− p0

1− (1− p0)

)
= 1− p0. (11.26)
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Thus, we have,

dP(n, t)
dt

= Ȁ ′
n−1∑

n′=0

p0(1− p0)n−n′P(n′, t) + ȁ (n + 1)P(n + 1, t)

− Ȁ ′(1− p0)P(n, t)− ȁnP(n, t). (11.27)

As we might expect, an analytical solution for this master equation is difficult. We are left to simulate
it using SSA.

11.7 The steady state distribution for bursty expression is Negative Bi-
nomial

We can try the same guess-and-check method as before to get the steady state distribution. We will
guess that the distribution is Negative Binomial. We guess this because it has the right story.

We perform a series of Bernoulli trials with a success rate p0 until we get r successes.
The number of failures, n, beforewe get r successes isNegative Binomially distributed.

Bursty gene expression can give mRNA count distributions that are Negative Binomially dis-
tributed. Here, “success” is that a burst in gene expression stops. So, the parameter p0 is related
to the length of a burst in expression (lower p0 means a longer burst). The parameter r is related to
the frequency of the bursts. If multiple bursts are possible within the lifetime of mRNA, then r > 1.
Then, the number of “failures” is the number ofmRNA transcripts that aremade in the characteristic
lifetime of mRNA.

The Negative Binomial distribution is equivalent to the sum of r Geometric distributions. So,
the number of copies will be given by how many bursts we get before degradation. This suggests that
r = Ȁ ′/ȁ . We can then write the Negative Binomial probability mass function as

P(n; r, p0) =
(n + r − 1)!
n!(r − 1)!

pr
0(1− p0)n, (11.28)

where r = Ȁ ′/ȁ . You can plug this in to the master equation to verify that this is indeed a steady
state.

We can put this in more convenient form. Instead of using p0 to parametrize the distribution, we
can instead define the burst size b as the mean of the geometric distribution describing the number
transcripts in a burst,

b =
1− p0

p0
. (11.29)

Recall that r is the typical number of bursts before degradation (or dilution), so r is a burst frequency.
So, for convenience, we write the steady state distribution as

P(n; r, b) =
(n + r − 1)!
n!(r − 1)!

bn

(1+ b)n+r . (11.30)

Strictly speaking, r can be non-integer, so

P(n; r, b) =
ɓ(n + r)
n!ɓ(r)!

bn

(1+ b)n+r , (11.31)
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where ɓ(x) is the gamma function.

The Negative Binomial is interesting because it can be peaked for r > 1, but has a maximum at
n = 0 for r < 1. So, for a low burst frequency, we get several cells with zero copies, but we can also
get cells with many. This might have interesting implications on the response of a group of cells to
a rise in lactose concentration and also drop in other food sources. If r < 1, we then have a simple
explanation for the “all-or-none” phenomenon of induction observed 60 years ago in E. coli (Novick
and Weiner, PNAS, 1957). Cells are either fully induced or not at all; with r < 1, many cells have no
Ȁ -galactosidase at all.

The known summary statistics of the negative binomial distribution are also useful.

⟨n⟩ = rb (11.32)

⟨n2⟩ = rb(1+ b + rb) (11.33)

ȑ 2 = rb(1+ b) (11.34)

Fano factor = F = 1+ b (11.35)

noise = ȅ =

√
1+ b

rb
. (11.36)

So, we can tune the burst frequency and burst size to control variability. For example, we could keep
⟨n⟩ constant by increasing the burst size b while decreasing the burst frequency r (big, intermittent
bursts), which would result in increased noise. If, instead, we decreased the burst size while increas-
ing the burst frequency (short, frequent bursts), we get reduced noise. This gives a design principle,
bursty gene expression enables cells to regulate the mean and cell-cell variability of protein lev-
els by controlling burst frequency and burst size.
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