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11 Bursty gene expression

Last time, we laid out two objectives. First, we aimed to identify the sources of noise and how to
characterize them. We summarized statistics about the probability distribution of copy numbers by
considering the mean and coefficient of variation. The mean ends up following the same deterministic
dynamics we have been considering thus far in the course. The coefficient of variation is a measure of
noise, or relative departure from the mean behavior. Now, we will look at the dynamics of the entire
probability distribution of copy number, P(z, 1).

11.1  Master equations

We will use master equations to describe the dynamics of P(#, t). Generally, a master equation is a
loss-gain equation for probabilities of states governed by a Markov process.* In our case, the “state”
is the set of copy numbers of molecular species of interest. The values of # are discrete, so we have a
separate differential equation for each P(, ). Specifically,

dP(n,t)
dr

= [W(n|n)P(n 1) — W(n' | n)P(n,1)]. (11.1)

n/
Here, W(n | n') is the transition probability per unit time of going from #’ to .

The master equation makes sense by inspection and appears simple. The nuance lies in the def-
inition of the transition rates, W(n | n’). There is also the computational difficulty that # can be very
large. In general, solving the master equation is difficult and is usually intractable analytically. There-
fore, we sample out of the distribution. That is, we can draw many samples of values of 7 at time points
¢ that are distributed according to the probability distribution that solves the master equation. We can
then plot histograms to get an approximate plot of the probability distribution. We can also use the
samples to compute moments, giving us estimates of the mean and variance. Generating the samples
from the differential master equation is done using a Gillespie algorithm, also known as a stochastic
simulation algorithm, or SSA. We will learn how to do these calculations in the next lecture.

11.2  The Master equation for unregulated gene expression

As we have seen in class, unregulated gene expression is described by the macroscale equation

dn — (11.2)

de
To translate this into stochastic dynamics, we write the production rate as

production rate = £ 0, 41, (11.3)

where we have used the Kronicker delta,

1 i=j
5,]{ Y, (11.4)

*A good reference for studying master equations is Stochastic Processes in Physics and Chemistry by
N. G. van Kampen.
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This says that if our current copy number is # — 1, the probability that it moves to # in unit time is /3.
Similarly, the decay rate is

decayrate = y (7 + 1) 0w pt1- (11.5)

This says that if we have # + 1 molecules, the probability that the copy number moves to # in unit
time is ¥ (z + 1). Thus, we have

Wn|n')=p6yni+y(n+1)6yan. (11.6)
We can then write our master equation as

dP(n, 1)
dr

= pPn—1,t)+ y(n+1)P(n+1,t) — fP(n,t) — ynP(n,1), (11.7)

where we define P(n < 0,7) = 0.

This is a large set of ODEs, and as mentioned in the previous section, solving for P(z, r) is non-
trivial and is usually done by Gillespie algorithm. Instead, let’s look for a steady state solution of this
system of ODE:s; i.e., let’s find P(r) that satisfies

dp

=0 (11.8)

Even solving for this is difficult. We will instead try a guess-and-check method. We will guess that
the steady state distribution is Poisson. We make this guess because it matches an intuitive “story”
about the mRNA production. The story of the Poisson distribution is this:

Rare events occur with a rate A per unit time. There is no “memory” of previous
events; i.e., that rate is independent of time. The probability that # events occur in
unit time is Poisson distributed.

Our event here is the production of a gene product. We need these events to happen before decay.
The probability mass function of the Poisson distribution is

n

P(m; ) = — e . (11.9)

Let’s check if this works. We plug this expression for P(#) into the right hand side of the master
equation and see if we can get the expression to be equal to zero.

ﬂn—l n+1 /1’1 /171
TR et +ynt1) et —p et - ynn—e*’1 =0. (11.10)

Division of both sides of the equation by A" 'e=* /(n — 1)! gives

p

O N S VI (111

We see that we can get this expression to hold for all # provided A = f/y. So, the copy number if
Poisson distributed with mean /.

It is useful also to consider the moments of the Poisson distribution and compute useful summary
statistics of the distribution.

(n) = —, (11.12)
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2\ nzzazzﬁ
(n") — (n) , (11.13)

noise = % =n= \/z, (11.14)

o
Fano factor = F= — = 1. (11.15)
(n)

)

11.3  Dynamics of the moments

From the master equation, we can derive an ODE describing the dynamics of the mean copy number
of time, (n(z)). To do this, we multiply both sides of the master equations by # and then sum over #.

in {dP(dnt,t) = pPn—15)+y(n+1)P(n+1,t) — pP(n,t) — ynP(n,1)

n=0

= % =B nP(n—1,8)+y Y nln+)Pn+1,2)— fin) — y(n*), (11.16)

where we have used the facts that

(n) = i nP(n, 1), (11.17)

(n?) = i n*P(n,t). (11.18)

We have two sums left to evaluate.

o0 oo

> nP(n—1,6) =Y (n+1)P(n1) = (n) +1, (11.19)

and - a
i n(n+1)Pn+1,1) = i n(n—1)P(n,) = (n?) — (n). (11.20)
Thus, e e
% = p((n) +1) + y((n*) — (m)) — B(n) — v (n*)
=B —y(n), (11.21)

which is precisely the macroscale ODE we are used to. It is now clear that it describes the mean of
the full probability distribution.

11.4  Experimental Fano factors are greater than one

A nice feature of considering the whole probability distribution is that we can predict a value for the
noise and Fano factor. Importantly, the Fano factor is invariant to parameters; it is always unity. So,

41



if we see Fano factors of unity in experiment, we know our model for gene transcription is at least
plausible.

Gene expression in individual cells typically results in a Fano factor greater than one! There
are many ways this could come about, such as explicitly considering the multiple steps involved in
making a protein, or by having a switchable promoter, as we will explore in the homework. Today, we
will focus on a key experimental results: gene expression occurs in bursts.

11.5 Observations of bursty gene expression

In a beautiful set of experiments, Cai, Friedman, and Xie (Vature, 440, 358-362, 2006) discovered
that gene expression is bursty. (We will come to understand what we mean by “bursty” means in a
moment.)

Through a clever experimental setup (I encourage you to read the paper), Cai, Friedman, and
Xie were able to get accurate counts of the number of -galactosidase molecules in individual cells
over time. They found that the number of molecules was constant over long stretches of time, and
then the number suddenly increased (Fig. 17). This shows that expression of the f-ga/ gene happens
in bursts. In each burst, many molecules are made, and then there is a period between bursts where
no molecules are made.
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Figure 17: Number of f-galactosidase molecules present in a single cell over time
(black) and a blank background (red). Take from Cai, Friedman, and Xie NVature, 440,
358-362, 2006.

Cai and coworkers also found that the number of molecules produced per burst was geometrically
distributed, as shown in Fig. 18. Recall, the “story” behind the Geometric distribution.

We perform a series of Bernoulli trials with success probability p, until we get a suc-
cess. We have £ failures before the success. The probability distribution for £ is Geo-
metric.

The probability mass function for the Geometric distribution is
P(k; po) = (1= po)*p. (11.22)

Considering this story, this implies that a burst is turned on, and then it turns off by a random process
after some time.
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Figure 18: Histogram of burst sizes. The histogram is well-described by the geometric
distribution. Take from Cai, Friedman, and Xie NVature, 440, 358-362, 2006.

11.6  Master equation for bursty gene expression

We also see from Fig. 17 that the time scale of the bursty gene expression is much shorter than the
typical decay time. So, per unit time, we can have many gene products made, not just a single gene
product as we have considered thus far. So, we can re-write our transition probabilities per unit time
as

Wn|n)=p"& - r(n+1)81m, (11.23)

where &; is the probability of making j molecules in a burst and B’ is the probability per unit time

of initiating production of molecules. If §; = 0 for all j # 1, then B’ = B, and we have the same
equations as before. So, our model is only slightly changed; we just allow for more transitions in and
out of state #.

We just have to specify &;. We know that the number of molecules produced per burst is geomet-
rically distributed, so

&; = po(1—po). (11.24)

Now, our master equation is

dP(n, 1) - ,
@ ﬂ',;f"’“ —p0)" " P(n', 1) + y(n+ 1)P(n+1,1)
-4 ) po( — po)" ""P(n,t) — ynP(n,1). (11.25)
n' =n+1

We can simplify the second sum by noting that can be written as a geometric series,

Z Po(l —po)ﬂ/—ﬂ :PO Z(l —Po)f =Po (11(;p0)) =1 —PO. (1126)

n' =n+1 j=1 Po
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Thus, we have,

dPEz, d =p ,,Z::OPO(I —po)" " P(n 1) + y(n+1)P(n +1,1)
~ F Q=P )~ yuPle, ), (11.27)

As we might expect, an analytical solution for this master equation is difficult. We are left to simulate
it using SSA.

11.7 The steady state distribution for bursty expression is Negative Bi-
nomial

We can try the same guess-and-check method as before to get the steady state distribution. We will
guess that the distribution is Negative Binomial. We guess this because it has the right story.

We perform a series of Bernoulli trials with a success rate po until we get 7 successes.
The number of failures, , before we get » successes is Negative Binomially distributed.

Bursty gene expression can give mRNA count distributions that are Negative Binomially dis-
tributed. Here, “success” is that a burst in gene expression stops. So, the parameter p, is related
to the length of a burst in expression (lower po means a longer burst). The parameter r is related to
the frequency of the bursts. If multiple bursts are possible within the lifetime of mRNA, then r > 1.
Then, the number of “failures” is the number of mMRNA transcripts that are made in the characteristic
lifetime of mRNA.

The Negative Binomial distribution is equivalent to the sum of » Geometric distributions. So,
the number of copies will be given by how many bursts we get before degradation. This suggests that
r = f'/y. We can then write the Negative Binomial probability mass function as

(n+r—1)

P(ﬂ, r,PO) = n|(r_ 1)| PG(]- _pO)na (1128)

where = f’/y. You can plug this in to the master equation to verify that this is indeed a steady
state.

We can put this in more convenient form. Instead of using p, to parametrize the distribution, we
can instead define the burst size 4 as the mean of the geometric distribution describing the number
transcripts in a burst,

b: l_pO
Do

Recall that ris the typical number of bursts before degradation (or dilution), so is a burst frequency.
So, for convenience, we write the steady state distribution as

. (11.29)

(n+r—1)! b

P(n;r,b) = A=) Ao (11.30)
Strictly speaking,  can be non-integer, so
P p) — LD b (11.31)

nT(r)! (1+b)rtr’
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where I'(x) is the gamma function.

The Negative Binomial is interesting because it can be peaked for » > 1, but has a maximum at
n = 0 for r < 1. So, for a low burst frequency, we get several cells with zero copies, but we can also
get cells with many. This might have interesting implications on the response of a group of cells to
a rise in lactose concentration and also drop in other food sources. If » < 1, we then have a simple
explanation for the “all-or-none” phenomenon of induction observed 60 years ago in E. coli (Novick
and Weiner, PNAS, 1957). Cells are either fully induced or not at all; with » < 1, many cells have no
P-galactosidase at all.

The known summary statistics of the negative binomial distribution are also useful.

(n) =15 (11.32)

(n*) = rb(1+ b+ rb) (11.33)

% =rb(1+b) (11.34)

Fano factor = F=1+4 (11.35)
1

noise = 7 = :l;b. (11.36)

So, we can tune the burst frequency and burst size to control variability. For example, we could keep
(m) constant by increasing the burst size & while decreasing the burst frequency r (big, intermittent
bursts), which would result in increased noise. If] instead, we decreased the burst size while increas-
ing the burst frequency (short, frequent bursts), we get reduced noise. This gives a design principle,
bursty gene expression enables cells to regulate the mean and cell-cell variability of protein lev-
els by controlling burst frequency and burst size.
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