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21 Turing patterns

In recent lectures, we have been talking about signaling between cells, whether via cytokines regulating
homeostasis, via Delta-Notch signaling, or via BMP signaling. The latter two signaling pathways are
important in development of an organism, as we saw in lecture. They lead to spatial patterning of
cells of different types.

As we saw in the discussion of BMP, the expression of other genes in the cells of interest depend
on the concentration of the ligands and receptors involved in signaling. It seems that inmany contexts,
biochemical cues that influence cell fate do so in a concentration-dependent manner; higher concentra-
tions result in stronger signals than lower concentrations. Such chemical species, which determine
cell fate in a developmental context in a concentration-dependent way, are calledmorphogens.

For this lecture, we will discuss reaction-diffusion mechanisms for generating spatial distribu-
tions of morphogens. This is important both practically, and historically.

21.1 Turing’s thoughts on reaction-diffusion mechanisms for morpho-
genesis

In my favorite paper of all time, Alan Turing laid out a prescription for morphogenesis. He described
what should be considered when studying the “changes of state” of a developing organism. Turing
said,

In determining the changes of state one should take into account:

(i) the changes of position and velocity as given byNewton’s laws ofmotion;

(ii) the stresses as given by the elasticities and motions, also taking into ac-
count the osmotic pressures as given from the chemical data;

(iii) the chemical reactions;

(iv) the diffusion of the chemical substances (the region in which this diffu-
sion is possible is given from the mechanical data).

This makes perfect sense; it we are shaping an organism, we have to think about what changes the
shape and also how the little molecules that govern the shape move about and react. That said, a few
lines later in the paper, Turing wrote, “The interdependence of the chemical and mechanical data
adds enormously to the difficulty, and attention will therefore be confined, so far as is possible, to
cases where these can be separated.”

Turing went on to consider only the chemical reactions coupled with diffusion. His claim, which
we will explore mathematically in this lecture, was that when diffusion was considered, spatial pat-
terns in chemical species could form. Stop and think about that for a moment. Diffusion, a dissipative
process, can help give spatial patterns in chemical systems that otherwise have no spatial information.
In all of your life experience, I bet diffusion has served to flatten out patterns, like when you put food
coloring in a glass of water. Let’s explore Turing’s counterintuitive proposal.

We will specifically explore a type of patterning that now bears the name “Turing patterns.” A
Turing pattern is formed spontaneously due to diffusion from a system of two chemical species that
have a stable fixed point in the absence of diffusion.
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21.2 Reaction-diffusion equations for two components

Consider two chemical components, U and V, that can react with each other. The dynamical equa-
tions we have considered thus far are of the form

du
dt

= f(u, v) (21.1)

dv
dt

= g(u, v). (21.2)

If the species can undergo diffusion, we need to include diffusive terms. We use Fick’s second law,
which says that the rate of change of concentration of a diffusing species if

∂c
∂t

= D∇2c, (21.3)

to update our dynamical equations.

∂u
∂t

= Du∇2u + f(u, v) (21.4)

∂v
∂t

= Dv∇2v + g(u, v). (21.5)

Our goal is to determine what type of regulation we need in the chemical circuit (i.e., to decide
what type of arrowheads, activating or repressing, to use in Fig. 19) and what values of Du and Dv are
necessary to give spontaneous patterning of U and V.

U V

U V U V

Figure 19: Unspecified interactions of a circuit that can for Turing patterns with diffu-
sion. Our goal is to figure out the arrowheads.

21.2.1 Linear stability analysis of a PDE

Earlier in the class, we learned how to do linear stability analysis of a fixed point of a systemof ordinary
differential equations. For this system, we also have spatial derivatives, so we need to perform linear
stability analysis on a system of partial differential equations. Specifically, we will consider a chemical
reaction system that has a stable fixed point in the absence of diffusion. The idea is that the chemical
reaction system itself will not be oscillatory and run away to some other state. We will test to see if
the inclusion of spatial information, by explicitly considering diffusion, can make the entire system
unstable, thereby giving rise to patterns.

Let us assume that (u0, v0) is a stable fixed point of the dynamical system in the absence of diffu-
sion. That is, f(u0, v0) = g(u0, v0) = 0. Therefore, we can construct a homogeneous steady state where
a(x) = u0 and b(x) = v0, where x denotes spatial variables. This is to say that the concentrations of
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species u and v are everywhere equal to their value at the stable fixed point. This is the unpatterned
state, which is stable in the absence of diffusion.

The question now is is the homogeneous steady state stable in the presence of diffusion? To answer this
question, we will perform a linear stability analysis. We linearize f(u, v) and g(u, v) about (u0, v0).

f(u, v) ≈ f(u0, v0) + fu Ȃu + f v Ȃv, (21.6)

g(u, v) ≈ f(u0, v0) + gu Ȃu + gv Ȃv, (21.7)

where

fu =
∂ f
∂u

∣∣∣∣
(u0,v0)

, f v =
∂ f
∂v

∣∣∣∣
(u0,v0)

, (21.8)

gu =
∂g
∂u

∣∣∣∣
(u0,v0)

, gv =
∂g
∂v

∣∣∣∣
(u0,v0)

, (21.9)

and Ȃu = u − u0 and Ȃv = v − v0 represent the perturbation from the homogeneous steady state.
Note that Ȃu and Ȃv are functions of position x and time t. Thus, our linearized system is

∂ Ȃu
∂t

= Du∇2 Ȃu + fu Ȃu + f v Ȃv, (21.10)

∂ Ȃv
∂t

= Dv∇2 Ȃv + gu Ȃu + gv Ȃv. (21.11)

Note that the terms fu and gv describe the nature of the autoregulation of the genetic circuit

Taking the Fourier transform of the equations gives

∂ Ȃ̂u
∂t

= −k2Du Ȃ̂u + fu Ȃ̂u + f v Ȃ̂v (21.12)

∂ Ȃ̂v
∂t

= −k2Dv Ȃ̂v + gu Ȃ̂u + gv Ȃ̂v, (21.13)

where k is the vector of wave numbers (e.g., k = (kx, ky) for a two-dimensional system) and k2 ≡ k ·k.
This is now a system of linear ordinary differential equations in Ȃ̂u and Ȃ̂v, which we can approach in
our usual way of doing linear stability analysis.

To avoid the cumbersome hats on the Fourier-transformed variables, we note that solving the
linear system above is the same as searching for harmonic solutions to equations (21.10) and (21.11)
of the form

Ȃu = Ȃu0 e−ik·x+ȉ t, (21.14)

Ȃv = Ȃv0 e−ik·x+ȉ t. (21.15)

We can then write the resulting system of linear ODEs as

ȉ
(

Ȃu
Ȃv

)
= A

(
Ȃu
Ȃv

)
, (21.16)

where the linear stability matrix is given by

A =

(
−k2Du + fu f v

gu −k2Dv + gv

)
. (21.17)

57



As before, our goal is to compute the eigenvalues ȉ of this matrix. For a 2×2 matrix, the eigenvalues
are

A =
1
2

(
tr(A)±

√
tr2(A)− 4det(A)

)
, (21.18)

where tr(A) is the trace of A and det(A) is its determinant.

In the absence of diffusion, tr(A) = fu + gv. Because we have specified that in the absence
of diffusion, the chemical reaction system has a stable fixed point, at least one of fu or gv must be
negative. Interestingly, the trace of the linear stability matrix with diffusion included is maximal for
the zeroth mode (k = 0), which means that an instability arising from the trace becoming positive
has the zeroth mode as its fastest growing. If the determinant is positive at the onset of the instability
(when the trace crosses zero), the eigenvalues are imaginary, which means that the zeroth mode is
oscillatory. This is called a Hopf bifurcation.

We will stipulate that gv < 0, leaving for now the possibility that fu may be negative as well. In
the presence of diffusion, the trace is

tr(A) = fu + gv − (Du + Dv) k2. (21.19)

Since the second term is always negative, and we have decreed that fu + gv < 0 by virtue of the
chemical reaction systembeing stable in the absence of diffusion, the trace is always negative. As such,
we can only get an eigenvalue with a positive real part (an instability) if the determinant is negative.

The determinant of the linear stability matrix is

det(A) = DuDv k4 − (Dv fu + Du gv)k2 + fu gv − f v gu. (21.20)

This is quadratic in k2, and since DuDv > 0, this is a convex parabola. Therefore, we can calculate
the wave number where the parabola is a minimum.

∂

∂k2
det(A) = 2DuDv k2 − Dv fu − Dugv = 0. (21.21)

Thus, we have

k2min =
Du gv + Dv fu

2DuDv
. (21.22)

Inserting this expression into the expression for the determinant gives the minimal value of the de-
terminant.

det(A(kmin)) = fugv − f vgu −
(Du gv + Dv fu)2

4DuDv
. (21.23)

Therefore, the determinant is negative when

Du gv + Dv fu > 2
√

DuDv(fugv − f vgu). (21.24)

Because we have decreed that the chemical system in the absence of diffusion is stable, the determi-
nant of the linear stability matrix of that system, fugv − f vgu, must be positive, so the term in paren-
theses in the square root must be positive. Thus, we must have

Du gv + Dv fu > 0 (21.25)

in order to have a negative determinant and therefore an instability. Since we already showed that at
least one of fu or gv must be negative, we must have exactly one be negative. We will take fu > 0,
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as we already decreed that gv < 0. Note that having gv < 0 does not necessarily mean that we have
autoinhibition, since we could also have gv < 0 by degradation or dilution. However, the signs of fu

and gv indicate that U is autoactivating and is in a negative feedback loop with V.

Finally, let’s look again at our expression for k2min, equation (21.22). For kmin to be real, we must
have

Dv fu + Dugv > 0. (21.26)

We also have fu + gv < 0 from the condition that the trace of the linear stability matrix is negative.
So, we have four inequalities,

fu > 0, (21.27)

gv < 0, (21.28)

fu + gv < 0, (21.29)

Dv

Du
fu + gv > 0. (21.30)

A requirement for all of these inequalities can only hold is that Dv > Du. Thus, we have arrived at
our conditions for formation of Turing patterns.

1) We need an autocatalytic species (an “activator”).

2) The activator must have a negative feedback loop with the other species, the “inhibitor.”

3) The inhibitor must diffuse more rapidly than the activator.

The intuition here is that the activator starts producing more of itself locally. The local peak starts to
spread, but the inhibitor diffuses more quickly so that it pins the peak of activator in so that it cannot
spread. This gives a set wavelength of the pattern of peaks.

U V

U V U V

Figure 20: Circuits that can form Turing patterns. The dashed line indicates that au-
torepression is not necessary, only that gv < 0.

21.2.2 Wavelength of a Turing pattern

Thewavelength of aTuring pattern is set, at least as the instability begins to grow, by the fastest growing
mode, k. That is, for the value of k for which the eigenvalue ȉ is largest. We have already shown that
kmin, the k for which the determinant of the linear stability matrix is minimal, is the k corresponding
to the fastest growing mode.

21.2.3 Turing patterns do not scale

Turing patterns do not scale with the size of the organism because the wavelength of the pattern,
given by the fastest growing mode, k, is independent of system size. So, if a system is twice as large,
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it would have twice as many peaks and valleys in the pattern. In the next lecture, we will address
this problem of scaling and talk about reaction-diffusion systems that can give patterns that scale with
organism size.

21.3 Example: The Activator-Substrate Depletion Model

As an example of a system that undergoes aTuring pattern, let us consider now the activator-substrate
depletion model, or ASDM. This is a simple model in which there are two species, the activator and
substrate. The activator is autocatalytic, but consumes substrate in the process. It also has our stan-
dard degradation. The substrate is constitutively produced, and for the sake of simplicity, we assume
it is very stable such that its degradation is all by consumption by the activator. This corresponds to
the right circuit in Fig. 20. The dynamical equations are

∂a
∂t

= Da∇a + ȏa2s− ȁa, (21.31)

∂s
∂t

= Ds∇s + Ȁ − ȏa2s. (21.32)

We nondimensionalize by choosing t ← tȁ , (x, y, z) ←
√

Ds/ȁ (x, y, z), a ← ȁa/Ȁ , s ← Ȁ ȏ s/ȁ 2,
d = Da/Ds and Ȋ = Ȁ 2 ȏ/ȁ 3. Then, the dimensionless equations are

∂a
∂t

= d∇a + a2s− a, (21.33)

∂s
∂t

= ∇s + Ȋ (1− a2s). (21.34)

This system has a unique homogeneous steady state of a0 = s0 = 1. In the language of our general
Turing system, here we have f a = f s = 1, ga = −2Ȋ , and gs = −Ȋ , so we have a linear stability
matrix

A =

(
1− dk2 1
−2Ȋ −Ȋ − k2

)
. (21.35)

In order to avoid oscillatory instabilities, we must have Ȋ > 1, since we must have a negative trace of
the linear stability matrix in the absence of diffusion. The fastest growing mode is

k2min =
1− dȊ

2d
. (21.36)

For kmin to be real, we must have d/Ȋ < 1, so d < 1 since Ȋ > 1.

We can compute the eigenvalues of the linear stability matrix andmake a linear stability diagram,
shown in Fig. 21. We see that we must have a fast diffusing substrate to get a Turing pattern. An
example pattern is given in Fig. 22.
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Figure 21: Linear stability diagram for the ASDM.

Figure 22: A pattern arising from a one-dimensional activator-substrate depletion
model.
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