
BE 150 Spring 2018
Homework #5

Due at the start of lecture, May 9, 2018.

Problem 5.1 (Delay oscillators, 50 pts).
In class, we have seen delay oscillators inwhich a gene is autoinhibitorywith delay. In
this problem, we will consider a delay oscillator in which we have autoinhibition, but
also enzymatic degradation in addition to the normal autodegradation due to dilution.
We will do an analytical and numerical treatment to see what we can learn about the
dynamics of delay oscillators. This model was proposed byMather, et al., PRL, 102,
068105, 2009.

a) Let X be the concentration of the protein of interest that undergoes the dy-
namics described above. We can describe its dynamics with the ODE

dX
dt = β kn

kn + (X(t − τ ))n − δ X
K + X − γX. (5.1)

Explain what each term means. Why do we write the delay as we do? What
physical process might this be describing?

b) Show that the ODE may be nondimensionalized to read

dx
dt =

β
1 + (x(t − τ ))n − δ x

κ + x − x, (5.2)

where we have redefined parameters and variables to be dimensionless.

c) Numerically solve the DDE for β = 1000, δ = 200, κ = 0.1, n = 4.
Perform the calculation for τ = 0.1 and τ = 10. From these numerical
calculations, compute the amplitude an period of the oscillations. The Jupyter
notebook from lecture 10 will probably be helpful for this part of the problem.

d) Wewill now treat the delay oscillator analytically. As we has seen elsewhere in
the class, analytical treatments in certain limits (in which analytical progress
is tractable) can reveal insights about the functioning of a circuit. First, we
will consider purely switch-like autodegradation (n → ∞). This means that
the rate of production of protein is β if x(t − τ ) < 1 and zero otherwise.
This approximates the case of highly ultrasensitive repression. Next, we will
consider that the enzymatic degradation is always saturated and progresses at
a rate δ . This is the case is κ ≪ 1. So, our approximate ODE is

dx
dt ≈ β [1 − θ (x(t − τ )− 1)]− δ − x, (5.3)

where θ (x) is the Heaviside function. We will now step through a single os-
cillation to see how long it takes (the period) and how high x gets (the ampli-
tude). We will start at dx/dt < 0 and x = 1, i.e., on our way down in x. We
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will call this t = 0. No X will be produced until t = τ , since until that time,
x(t − τ ) > 1. This portion of the oscillation takes time τ . During this time,
the concentration of x continues to drop, roughly to zero. So, now, we are at
time t = τ with x ≈ 0.

The next part of the oscillation involves production of X.

i) Show that the amount of time it takes to get to x = 1 is t1 = ln[(β −
δ )/(β − δ − 1)]. Hint: Write down and solve the ODE for x(t) in
this regime in which x is being produced at rate β and degraded at rate
δ + x. Recall that the solution to the ODE ẋ = a + bx is x(t) =
(a/b + x(0)) ebt − a/b.

ii) From time t = τ + t1, X will continue to be produced until t = 2τ + t1,
when production of X halts. Explain why this is the case.

iii) Show that x(2τ + t1) = (β − δ ) + (1 − β + δ )e−τ . This is the
maximal value of x, and is therefore the amplitude. So, we define A =
(β − δ ) + (1 − β + δ )e−τ .

iv) Coming down from the peak, with X no longer being produced, we com-
plete the oscillation by returning to x = 1. Show that the time it takes to
return to x = 1 from the peak of the oscillation is t2 = ln[(A + δ )/(1 +
δ )].

v) The total time of the oscillation (the period) is thereforeT = 2τ+t1+t2.
Show that in the limit of β , δ ≫ 1,

T ≈ 2τ + ln
[

β
δ
(
1 − e−τ)+ e−τ

]
. (5.4)

vi) How do your analytical amplitude and period compare to what you com-
puted in your numerical analysis?

e) These analytical results reveal a strategy for tuning the oscillator.

i) How could you tune the period and amplitude of the oscillator indepen-
dently? Consider cases where τ ≫ 1 and τ ≪ 1.

ii) Change parameters tomake the amplitude of the oscillator twice as large
while keeping the same period as in part (c) for both parameter sets con-
sidered there. Numerically solve, plot the result, and explain your strat-
egy.

iii) Change parameters to make the period of the oscillator twice as long
while keeping the same amplitude as in part (c) for both parameter sets
considered there. Numerically solve, plot the result, and explain your
strategy.

iv) Based on your analysis, why is it important to have enzymatic degrada-
tion of X to have tunable oscillations?
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Problem 5.2 (Noise in a switchable promoter, 50 pts).
This question was inspired by Munsky, Neuert, and van Oudenaarden, Science, 336,
183–187, 2012.

In this problem, wewill explore some aspects of stochastic gene expression using
both the analytical and computational techniques thatwe described in lecture. In this
problem we will contrast two models of stochastic gene expression.

The first model consists of a constitutively active promoter where transcription
happens with a constant stochastic rate, while the second model consists of a pro-
moter switching stochastically between an ON and an OFF state. Transcription in
this model can only occur when the promoter is in the ON state. This could, for ex-
ample, describe the open and closed chromatin state. mRNA degradation is present
in both models. We will not consider protein in this problem.

The models may be written as chemical equations,

Constitutive: ON β−−→ mRNA γ−−→ ∅

Regulated: OFF kon−−⇀↽−−
koff

ON β−−→ mRNA γ−−→ ∅.

When the promoter is on, transcription proceeds at a rate β . Otherwise, no tran-
scripts are made. Transcripts degrade with a rate γ .

a) Write down a master equation describing the temporal dynamics of the prob-
ability distribution of the number of RNA transcripts, P(n, t), for the consti-
tutive model. Nondimensionalize time using the decay rate γ .

b) In the lecture notes, we saw how to start with a master equation and derive an
ODE for the dynamics of the mean number of transcripts, ⟨n(t)⟩. We got

d⟨n⟩
dt =

β
γ − ⟨n⟩, (5.5)

where time is dimensionless (t = γ tdimensional). We did this bymultiplying both
sides of the master equation by n and then summing over all n.

i) Now, derive an expression for d⟨n2⟩/dt. Next, derive an expression for
dσ 2/dt. This will depend on both σ 2(t) and ⟨n(t)⟩. Hint:

dσ 2

dt =
d
dt

(
⟨n2⟩ − ⟨n⟩2) = d⟨n2⟩

dt − 2⟨n⟩ d⟨n⟩
dt . (5.6)

ii) For initial conditions n(0) = σ 2(0) = 0 (i.e., no transcripts exist), show
that the Fano factor is unity for all time by verifying that

⟨n(t)⟩ = σ 2(t) = β
γ
(
1 − e−t) . (5.7)
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c) In this part of the problem, you will perform stochastic simulations of the con-
stitutive model. This was very closely follows what we did in the notebook on
SSA. You can use functions from that notebook in your work here.

Start by writing down a system of stochastic chemical reactions for the
constitutive model of gene expression. Make sure to enumerate all species,
all reactions, and the propensity functions and associated parameters. Then,
using the stochastic simulation algorithm, implement a simulation of the con-
stitutive model of gene expression. Use β/γ = 10. Initialize your simulation
with no copies of mRNA being present.

i) Plot snapshots of the simulatedmRNAdistribution at various timepoints.
Make sure you take enough samples to get good histograms. Choose
the final time such that the system has enough time to settle down to its
steady state distribution. Comment on what you see.

ii) Compute the mean, variance, Fano factor, and noise η , as a function of
time from your SSA samples. Do the computed results match what you
obtained in part (b)?

d) Now, we will move on to the regulated model. Write down a similar master
equation for the regulated case. Now, each “state” is not just the mRNA copy
number, but also the state of the promoter (on or off ). Wewill define a variable
a ∈ {0, 1} describing this, where a = 0 means the promoter is off and a = 1
means it is on. Thus, write a master equation for P(a, n, t). Again, be sure to
nondimensionalize time using γ .

e) Using the stochastic simulation algorithm, implement a simulation of the reg-
ulated model of gene expression. Start with no transcripts with the promoter
being off. Again, use β/γ = 10 and make sure use to use a sufficient number
of SSA samples and run the simulation long enough to reach the steady state
distribution. You can try this for various values of kon and koff.

i) It can be shown that the steady state, the mean and Fano factor for this
model are, respectively,

⟨n⟩ = β
γ

kon

kon + koff
, (5.8)

F =
σ 2

⟨n⟩ = 1 +
β
γ

koff

kon + koff

1
1 + (kon/γ ) + (koff/γ ) . (5.9)

(You can derive this result if you like, but it is not required.) Do your
steady state results match this? This result may also serve as a guide for
interesting values of koff and koff to try in your SSA calculations.

ii) What is the significance that the Fano factor of the regulated model can
never be less than unity? Describe physically what is happening when
the Fano factor is large.
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iii) Can you get qualitatively different steady state distributions of RNAcopy
number by varying kon and koff? Plot representative distributions.
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