
BE 150 Spring 2018
Homework #8

Due at the start of lecture, May 30, 2018.

Problem 8.1 (Cytokines and homeostasis, 40 pts).
In this problem, we will investigate the control of cell proliferation by cytokines in
paradoxical regulation. In doing the analysis, you will learn some useful techniques
for analyzing dynamical systems.

Recall the general diagram from lecture, shown in Fig. 1.
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Figure 1: Diagram for a paradoxical regulation of cell proliferation by cytokines.
The cytokine, m, has a basal production rate of I0 from other cells. The cell
of interest, C, also secretes cytokines at a rate β 1. The cytokine regulates the
proliferation of cells, described by β (m). The cells die with rate γ c(m), also
regulated by the cytokine. The cytokine degrades with a rate γ m. Finally, the
cell takes in cytokine (thereby clearing it) at a rate f(m).

Wecanwrite differential equations to describe the dynamics of the concentration
of cells, C, and of cytokine, m.

dC
dt = β c(m)C − γ c(m)C, (8.1)

dm
dt = I0 + β 1C − α 0C f(m)− γ m(m). (8.2)

For simplicity, we will take γ m(m) → γ mm, as we have done thus far this term. We
will take

f(m) =
(m/k)n

1 + (m/k)n , (8.3)

a Hill function. Experimentally, n ≈ 1.7, and for simplicity, we will take n = 2. Also
in accordancewith experimentalmeasurement, we take γ c(m) to be a linear function
of m,

γ c(m) → γ c + α cm. (8.4)
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Finally, we also write β c(m) as a Hill function,

β c(m) = β 0 f(m). (8.5)

It has the same form as f(m) since the α 0C f(m) term in the m-dynamics describes
uptake of m by cells, and the β c(m) term in the C-dynamics described cytokine me-
diated growth, dependent on the uptake rate. Thus, our system of ODEs is

dC
dt = β 0

C (m/k)2

1 + (m/k)2 − γ cC − α cmC, (8.6)

dm
dt = I0 + β 1C − α 0

C (m/k)2

1 + (m/k)2 − γ mm. (8.7)

This is the dynamical system we will analyze in the problem.

a) Show that the equations can be nondimensionalized to go from eight parame-
ters to five. Specifically, show that the equations may be written, with appro-
priate re-definition of variables and parameters, as

dC
dt = β 0

m2C
1 + m2 − γC − α cmC (8.8)

dm
dt = I0 + C − α 0

m2C
1 + m2 − m. (8.9)

Henceforth, wewill be workingwith these dimensionless variables and param-
eters, e.g., m refers to the redefined dimensionless cytokine concentration.

b) Wewill now find the nullclines for equation (8.8). These are simply the curves
in the C-m plane for which dC/dt = 0.

i) Show that there is always a steady state with C = 0. Discuss why this
nullcline is a vertical line in the C-m plane.

ii) For arbitrary nonzeroC, dC/dt vanishes for particular values ofm. Show
that there are either zero or two such values. Demonstrate that a neces-
sary condition1 for existence of nonzero values ofm for which dC/dt = 0
is β 0 > γ . (Hint: It may help to write the equation for dC/dt = 0 as
a cubic polynomial.) What does this mean physically? Describe why the
nullclines for nonzero C are horizontal lines in the C-m plane.

c) Nowwewill find the nullcline for equation (8.9). The nullclinemay be written
as C(m), that is, C as a function of m. Derive this function. For what values
of m is the function defined (bearing in mind that m,C ≥ 0)?

1As an aside, it can be shown that the necessary and sufficient condition for having two nonzero

values of m for which dC/dt = 0 is α 2
c

(
β 2

0 − 20β 0 γ − 8γ 2
)
+ 4γ (β 0 − γ )3 − 4α 2

c > 0.
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d) Now thatwe have the nullclines, we can compute the fixed points (a.k.a. steady
states), which is where these lines cross.

i) The first fixed point is the one with C = 0. What is the value of m at this
fixed point?

ii) For the other (possibly) two fixed points, analytical solutions exist. How-
ever, the analytical solution is a mess, and it is easier to consider numer-
ical solutions. The dimensionless parameters used in Hart, et al., Cell,
158, 1022-1032, 2014, which are based on experimental measurements,
are: β 0 = 9.78, γ = 2.14, I0 = 24.67, α c = 1.06, and α 0 = 11.21.
Note that these are the dimensionless parameters, as defined in equa-
tions (8.8) and (8.9). For this parameter set, find the other two fixed
points. Hint: NumPy’s roots() function may be useful.

iii) Plot all of the nullclines for the given set of parameters. Overlay the fixed
points as dots.

iv) In part (b)ii, you already discussed conditions on β 0 and γ that are nec-
essary to get bistability. From your analytical analysis, can you comment
on the magnitudes of I0 and α 0 are are needed to get bistability? What
does this mean physically?

e) Plot the separatrix.

f ) Finally, overlay the a map of the flow of the dynamical system. Your final plot
should look very much like slide 29 of lecture 17.

g) Solve the system of ODEs for the given parameter set starting with an initial
condition of C and m just above the separatrix. Do this again with an initial
condition just below the separatrix. Plot your temporal profiles of C and m
and comment on the results.

h) Play with parameter values and investigate conditions for bistability. You al-
ready have much the machinery in place to do this, since you can already com-
puted the fixed points. For bistability, we must have three total fixed points
(two in addition to the C = 0 fixed point that always exists). You can use this
as a criterion to find ranges of parameter values for which bistability exists.
With respect to which parameter values is bistability most robust? How about
least robust?

Problem 8.2 (Analysis of cis-inhibition in the Delta-Notch system, 60 pts, +5 extra
credit).
In this problem, we will perform some of the analysis of the Delta-Notch system,
including cis-interactions, as done in Sprinzak, et al.,Nature, 465, 86–90, 2010. This
is a great example of how we can use analytical and numerical analysis of a simple
circuit to gain insights about its properties.
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The dynamics of Delta (D), Notch (N), Nicd (S), and the fluorescent reporter
(R) in a given cell are given by the following differential equations.

dN
dt = β N − γ NN − NDtrans

kt
− ND

kc
(8.10)

dD
dt = β D − γ DD − NtransD

kt
− ND

kc
(8.11)

dS
dt =

NDtrans

kt
− γ SS (8.12)

dR
dt = β R

(
NDtrans

γ SkRSkt

)p

− γ RR. (8.13)

In these equations, the subscript “trans” is used to denote the total amount of Delta
or Notch in contact with the cell of interest, either from neighboring cells or from
the plate on which they sit. We have also made approximations about fast dynamics
of cleavage of the Notch-Delta complex and subsequent expression of reporter such
that the equation for R is decoupled from that of S.

a) We first consider the first experiment in the Sprinzak paper in which the cells
were on a plate with a set concentration Dtrans = Dplate in the absence of
doxycycline. In this case, Ntrans = 0 and β D = 0. Because we are looking
at reporter dynamics, we do not need to consider the ODE for S. Solve for
the dynamics of the reporter, starting from an initial condition of R(0) = 0,
D(0) ≡ D0 = 200, and

N(0) =
β N

γ N + D0/kc + Dplate/kt
. (8.14)

Use the following parameter values.

Parameter Value Units
γ N 0.08 hours−1

γ D 0.08 hours−1

γ R 0.01 hours−1

γ S 0.1 hours−1

kt 2 plate concentration units · hours
kc 0.2 relative fluorescent units · hours
kRS 1500 relative fluorescent units · hours
β N 1 relative fluorescent units/hour
β R 1.25 × 108 relative fluorescent units/hour
p 2 dimensionless
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Note that we have set γ N = γ D, and we will assume this to be the case for
this entire problem. Calculate a curve for each value of Dplate = {0.063, 0.084,
0.11, 0.15, 0.20, 0.26, 0.35, 0.46, 0.62, 0.82, 1.1, 1.4}. Plot all of these curves.
Your plot should look a lot like Fig. 3h of the Sprinzak paper.

b) Now consider two cells in contact with each other. They have the sameNotch
production rate, β N, but they have different Delta production rates, β (1)

D and
β (2)

D . Our goal is to reproduce Fig. 4b of the Sprinzak paper, so we do not need
to consider reporter dynamics.

i) Recalling the definition of signal amplification given in lecture, show that
the signal amplification is

amplification =
1 − D2N1/D1N2

1 − β (2)
D /β (1)

D

. (8.15)

ii) Nondimensionalize equations (8.10) and (8.11), assuming γ N = γ D, to
get

dn1

dt = β̃ N − n1 − κd1n1 − d2n1 (8.16)

dn2

dt = β̃ N − n2 − κd2n2 − d1n2 (8.17)

dd1

dt = β̃ (1)
D − d1 − κd1n1 − d1n2 (8.18)

dd2

dt = β̃ (2)
D − d2 − κd2n2 − d2n1. (8.19)

iii) Show that a homogeneous steady state n1 = n2 ≡ n0 and d1 = d2 ≡ d0

only exists when β (1)
D = β (2)

D . Why is this fact pertinent when consider-
ing the states of these neighboring cells?

iv) Equations (8.16)-(8.19) have a unique steady state. Why is it important to
know this fact? 5 points extra credit: Prove the existence and uniqueness
of the steady state. This is not easy, so only do it if you have time.

v) Show that the steady state is linearly stable. Why is this an important
fact? Hint: Use the following two facts. 1) A square matrix A has the
same eigenvalues as its transpose, AT. 2) The Gerschgorin Circle The-
orem states that for an n× n matrix A with entries aij, every (potentially
complex) eigenvalue λ satisfies

|λ − aii| ≤
∑
j̸=i

|aij| (8.20)

for at least one i. This gives the regions in the complex plane where the
eigenvalues may lie.
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vi) Numerically compute the steady state of the system and use it to repro-
duce Fig. 4b in the Sprinzak paper. Use β (2)

D = 1.35β (1)
D and the follow-

ing parameters.

Parameter Value Units
γ N 0.1 hours−1

γ D 0.1 hours−1

γ S 1 hours−1

kt 10 effective plate concentration units · hours
kc {0.5, 1, 10} relative fluorescent units · hours
β N 20 relative fluorescent units/hour
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