{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Appendix A: Regulatory functions and their derivatives\n", "\n", "
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Because we use certain functions to describe regulation of gene expression, it is useful to have a reference for the functions and their derivatives.\n", "\n", "**Dimensional forms**\n", "\n", "In all cases, the functions are dimensionless, and the arguments of the function are given in dimensionless form. To convert to a dimensional derivative, use the chain rule. Let $x_\\mathrm{dim}$ be the dimensional version of dimensionless $x$ such that $x_\\mathrm{dim} = a x$. Then,\n", "\n", "\\begin{align}\n", "\\frac{df}{\\mathrm{d}x_\\mathrm{dim}} = a \\,\\frac{\\mathrm{d}f}{\\mathrm{d}x}.\n", "\\end{align}\n", "\n", "
\n", "\n", "**Taylor series**\n", "\n", "In performing linear stability analysis, we need to express functions as Taylor series. For a univariate function (such a simple Hill functions), the Taylor series about the point $x_0$ is\n", "\n", "\\begin{align}\n", "f(x) = f(x_0) + \\left.\\frac{\\mathrm{d}f}{\\mathrm{d}x}\\right|_{x=x_0}\\,(x-x_0) + \\text{higher order terms.}\n", "\\end{align}\n", "\n", "For a bivariate function the Taylor series about point $(x_0, y_0)$ is\n", "\n", "\\begin{align}\n", "f(x, y) = f(x_0, y_0) + \\left.\\frac{\\partial f}{\\partial x}\\right|_{x=x_0, y=y_0}\\,(x-x_0) + \\left.\\frac{\\partial f}{\\partial y}\\right|_{x=x_0, y=y_0}\\,(y-y_0)+ \\text{higher order terms.}\n", "\\end{align}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Hill functions\n", "\n", "### Activating Hill function\n", "\n", "\\begin{align}\n", "&f(x) = \\frac{x^n}{1 + x^n}, \\\\[1em]\n", "&\\frac{\\mathrm{d}f}{\\mathrm{d}x} = \\frac{n x^{n-1}}{(1 + x^n)^2}.\n", "\\end{align}\n", "\n", "\n", "### Repressive Hill function\n", "\n", "\\begin{align}\n", "&f(x) = \\frac{1}{1 + x^n}, \\\\[1em]\n", "&\\frac{\\mathrm{d}f}{\\mathrm{d}x} = -\\frac{n x^{n-1}}{(1 + x^n)^2}.\n", "\\end{align}\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Two activators affecting a single gene\n", "\n", "### AND logic\n", "\n", "\\begin{align}\n", "&f(x, y) = \\frac{x^{n_x}\\, y^{n_y}}{1 + x^{n_x} y^{n_y}},\\\\[1em]\n", "&\\frac{\\partial f}{\\partial x} = \\frac{n_x\\,x^{n_x-1}\\,y^{n_y}}{(1 + x^{n_x} y^{n_y})^2},\\\\[1em]\n", "&\\frac{\\partial f}{\\partial y} = \\frac{n_y\\,x^{n_x}\\,y^{n_y-1}}{(1 + x^{n_x} y^{n_y})^2}.\n", "\\end{align}\n", "\n", "### OR logic\n", "\n", "\\begin{align}\n", "&f(x, y) = \\frac{x^{n_x} + y^{n_y}}{1 + x^{n_x} + y^{n_y}},\\\\[1em]\n", "&\\frac{\\partial f}{\\partial x} = \\frac{n_x\\,x^{n_x-1}}{(1 + x^{n_x} + y^{n_y})^2},\\\\[1em]\n", "&\\frac{\\partial f}{\\partial y} = \\frac{n_y\\,y^{n_y-1}}{(1 + x^{n_x} + y^{n_y})^2}.\n", "\\end{align}\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Two repressors affecting a single gene\n", "\n", "### AND logic\n", "\n", "\\begin{align}\n", "&f(x, y) = \\frac{1}{(1 + x^{n_x})(1 + y^{n_y})},\\\\[1em]\n", "&\\frac{\\partial f}{\\partial x} = -\\frac{n_x\\,x^{n_x-1}}{(1 + x^{n_x})^2\\,(1 + y^{n_y})},\\\\[1em]\n", "&\\frac{\\partial f}{\\partial y} = -\\frac{n_y\\,y^{n_y-1}}{(1 + x^{n_x})(1 + y^{n_y})^2}.\n", "\\end{align}\n", "\n", "### OR logic\n", "\n", "\\begin{align}\n", "&f(x, y) = \\frac{1 + x^{n_x} + y^{n_y}}{(1 + x^{n_x})(1 + y^{n_y})},\\\\[1em]\n", "&\\frac{\\partial f}{\\partial x} = -\\frac{n_x\\,x^{n_x-1}\\,y^{n_y}}{(1 + x^{n_x})^2\\,(1 + y^{n_y})},\\\\[1em]\n", "&\\frac{\\partial f}{\\partial y} = -\\frac{n_y\\,x^{n_x}\\,y^{n_y-1}}{(1 + x^{n_x})(1 + y^{n_y})^2}.\n", "\\end{align}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## One activator and one repressor affecting the same gene\n", "\n", "Here, we assign $x$ to be the concentration of the activator and $y$ to be the concentration of the repressor.\n", "\n", "### AND logic\n", "\n", "\\begin{align}\n", "&f(x, y) = \\frac{x^{n_x}}{1 + x^{n_x} + y^{n_y}},\\\\[1em]\n", "&\\frac{\\partial f}{\\partial x} = \\frac{n_x\\,x^{n_x-1}(1+y^{n_y})}{(1 + x^{n_x} + y^{n_y})^2},\\\\[1em]\n", "&\\frac{\\partial f}{\\partial y} = -\\frac{n_y\\,x^{n_x}\\,y^{n_y-1}}{(1 + x^{n_x} + y^{n_y})^2}.\n", "\\end{align}\n", "\n", "### OR logic\n", "\n", "\\begin{align}\n", "&f(x, y) = \\frac{1+x^{n_x}}{1 + x^{n_x} + y^{n_y}},\\\\[1em]\n", "&\\frac{\\partial f}{\\partial x} = \\frac{n_x\\,x^{n_x-1}\\,y^{n_y}}{(1 + x^{n_x} + y^{n_y})^2},\\\\[1em]\n", "&\\frac{\\partial f}{\\partial y} = -\\frac{n_y\\,(1+x^{n_x})\\,y^{n_y-1}}{(1 + x^{n_x} + y^{n_y})^2}.\n", "\\end{align}\n", "\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.7" }, "toc": { "base_numbering": 1, "nav_menu": {}, "number_sections": true, "sideBar": true, "skip_h1_title": false, "title_cell": "Table of Contents", "title_sidebar": "Contents", "toc_cell": false, "toc_position": {}, "toc_section_display": true, "toc_window_display": false }, "varInspector": { "cols": { "lenName": 16, "lenType": 16, "lenVar": 40 }, "kernels_config": { "python": { "delete_cmd_postfix": "", "delete_cmd_prefix": "del ", "library": "var_list.py", "varRefreshCmd": "print(var_dic_list())" }, "r": { "delete_cmd_postfix": ") ", "delete_cmd_prefix": "rm(", "library": "var_list.r", "varRefreshCmd": "cat(var_dic_list()) " } }, "types_to_exclude": [ "module", "function", "builtin_function_or_method", "instance", "_Feature" ], "window_display": false } }, "nbformat": 4, "nbformat_minor": 4 }