Appendix A: Regulatory functions and their derivatives


Because we use certain functions to describe regulation of gene expression, it is useful to have a reference for the functions and their derivatives.

Dimensional forms

In all cases, the functions are dimensionless, and the arguments of the function are given in dimensionless form. To convert to a dimensional derivative, use the chain rule. Let xdim be the dimensional version of dimensionless x such that xdim=ax. Then,

dfdxdim=adfdx.

Taylor series

In performing linear stability analysis, we need to express functions as Taylor series. For a univariate function (such a simple Hill functions), the Taylor series about the point x0 is

f(x)=f(x0)+dfdx|x=x0(xx0)+higher order terms.

For a bivariate function the Taylor series about point (x0,y0) is

f(x,y)=f(x0,y0)+fx|x=x0,y=y0(xx0)+fy|x=x0,y=y0(yy0)+higher order terms.

Hill functions

Activating Hill function

f(x)=xn1+xn,dfdx=nxn1(1+xn)2.

Repressive Hill function

f(x)=11+xn,dfdx=nxn1(1+xn)2.

Two activators affecting a single gene

AND logic

f(x,y)=xnxyny1+xnxyny,fx=nxxnx1yny(1+xnxyny)2,fy=nyxnxyny1(1+xnxyny)2.

OR logic

f(x,y)=xnx+yny1+xnx+yny,fx=nxxnx1(1+xnx+yny)2,fy=nyyny1(1+xnx+yny)2.

Two repressors affecting a single gene

AND logic

f(x,y)=1(1+xnx)(1+yny),fx=nxxnx1(1+xnx)2(1+yny),fy=nyyny1(1+xnx)(1+yny)2.

OR logic

f(x,y)=1+xnx+yny(1+xnx)(1+yny),fx=nxxnx1yny(1+xnx)2(1+yny),fy=nyxnxyny1(1+xnx)(1+yny)2.

One activator and one repressor affecting the same gene

Here, we assign x to be the concentration of the activator and y to be the concentration of the repressor.

AND logic

f(x,y)=xnx1+xnx+yny,fx=nxxnx1(1+yny)(1+xnx+yny)2,fy=nyxnxyny1(1+xnx+yny)2.

OR logic

f(x,y)=1+xnx1+xnx+yny,fx=nxxnx1yny(1+xnx+yny)2,fy=ny(1+xnx)yny1(1+xnx+yny)2.